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Série	8a	–	solution	
	

Problème	8a.1	–	Charge	concentrée	et	distribuée	
On	considère	une	poutre	AB,	encastrée	en	A,	avec	une	force	ponctuelle	et	une	force	distribuée.	Le	

moment	d’inertie	à	l’axe	neutre	est	𝐼!,#! = 3.35	𝑚$.	Trouver:	

(a) Les	forces	de	réactions	au	point	A	et	B.	
(b) La		force	de	cisaillement	V(x)	
(c) Le	moment	de	flexion	M(x)	
(d) La	flèche	w(x)	de	la	poutre.	
	

	

Figure 8a.1.1 Le cantilever et sa section transverse. L’origine C est située sur l’axe neutre. 
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Solution	
Qu’est	ce	qui	est	donné?	

Charge	distribuée:	𝑞 = 22.5		N/m	
Charge	concentrée:	𝐹 = 25	N	
Longueur:	𝐿 = 8	m	

Hypothèses	
Le	matériau	est	homogène	et	isotrope..	
La	coupe	transversale	de	la	poutre	dans	le	plan	ZY	reste	non	déformée	dans	toute	sa	longueur..	

Qu’est-ce	qui	est	demandé?	
(a) Les	forces	de	réaction	au	point	A.	
(b) Le	diagramme	des	forces	de	cisaillement.	
(c) Le	diagramme	des	moments	en	flexion.	
(d) L’équation	de	la	déflection	de	la	poutre.	

	
	
	

(a) Forces	de	réaction	au	point	A		
On	calcule	les	forces	de	réaction	à	partir	du	diagramme	des	forces	de	la	poutre	entière:	

	

Figure 8a.1.2 | Diagramme	des	forces	de	la	poutre. 

En	sommant	les	forces	en	y,	on	a:	

En	utilisant	l’équilibre	des	moments	𝑀!,	on	déduit	le	moment	𝑀%:	

Ce	qui	nous	donne	finalement:	

	
(b) Diagramme	des	forces	de	cisaillement	𝑉(𝑥)	

Sur	cette	poutre,	deux	forces	externes	sont	appliquées:	la	première	est	distribuée	uniformément	
sur	toute	la	longueur	de	la	poutre,	et	la	seconde	est	une	charge	ponctuelle	à	𝑥 = 5	𝑚.	

On	peut	trouver	𝑉(𝑥)	par	deux	méthodes:	i)	méthode	des	sections	et	ii)	méthode	différentielle.	

𝛴𝐹𝑦 = 𝑅𝐴 −𝐹−" 𝑞
𝐿

0
𝑑𝑥 = 0 → 𝑅𝐴 = 25+ (22.5)(8) = 205	𝑁	

	
	

𝛴𝑀𝑧 = 0 → 								+𝑀𝐴 − %"
𝐿
2𝑞

𝐿

0
𝑑𝑥 ∙&−𝐹 · 5 = 0 → 𝑀𝐴 	= 845	𝑁 · 𝑚	 	

𝑀% = 845	𝑁 · 𝑚,																					𝑅% = 205	𝑁	 	
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Méthode	des	sections:	Nous	allons	considérer	puis	analyser	deux	parties	distinctes	de	la	poutre:	
De	A	à	C	(𝑥 < 5	𝑚):	

	

Figure 8a.1.3 | Diagramme	des	forces	et	forces	internes	pour 𝑥 < 5	𝑚 
	

On	peut	écrire	la	formule	de	l’équilibre	des	forces	pour	la	partie	de	gauche	comme	illustré	sur	la	
Figure	8b.1.3:	

De	C	à	D	(𝑥 ≥ 5	𝑚):	

	

Figure 8a.1.4 | Diagramme	des	forces	et	forces	internes	pour 𝑥 ≥ 5	𝑚 
	

Comme	nous	l’avons	fait	précédemment,	nous	écrivons	la	formule	de	l’équilibre	des	forces	pour	la	
partie	de	gauche	comme	illustré	sur	la		Figure	8b.1.4:	

𝑉+(𝑥) = 𝑅% − 𝑞𝑥 = (205 − 22.5𝑥)	𝑁	 	

𝑉2(𝑥) = 𝑅% − 𝑞𝑥 − 𝐹 = (180− 22.5𝑥)	𝑁	
	

Méthode	 différentielle:	 On	 considère	 tout	 d’abord	 la	 charge	 distribuée	 appliquée	 sur	 la	
poutre:	

𝑞(𝑥) = 22,5						𝑥	𝜖	[0; 8]	
	

Pour	la	force	de	cisaillement,	on	utilise	la	relation	𝑉(𝑥) 	= 	−∫ 𝑞(𝑥)	𝑑𝑥	
𝑉+(𝑥) = 	−22,5	𝑥	 + 𝐶+							𝑥	𝜖	[0; 5]	
𝑉,(𝑥) = 	−22,5	𝑥	+𝐶,									𝑥	𝜖	[5; 8]	

Avec	les	conditions	aux	bords:	𝑉+(𝑥 = 0) = 205𝑁	
𝑉,(𝑥 = 𝐿) = 0	 ⇔ 	−22,5 ∗ 8+𝐶, 	= 0		
On	obtient:	
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Nous	pouvons	maintenant	tracer	le	diagramme	des	forces	de	cisaillement:	

	

Figure 8a.1.5 | Diagramme des forces de cisaillement 
	

(c) Diagramme	des	moments	en	flexion.	
Encore	une	fois,	il	est	possible	de	trouver	ce	diagramme	par	les	deux	méthodes.	
Méthode	des	sections:		
De	A	à	C	(𝑥 < 5	𝑚)	𝑒𝑛	𝑟𝑒𝑔𝑎𝑟𝑑𝑎𝑛𝑡	𝑙𝑎	𝑝𝑎𝑟𝑡𝑖𝑒	𝑑𝑒	𝑔𝑎𝑢𝑐ℎ𝑒:	

	𝑀+(𝑥) − 𝑀+(𝑥 = 0) = 𝑀+(𝑥) + 𝑀% = ∫ 𝑉(𝑥′)𝑑𝑥′-
. 	

De	C	à	B	(𝑥 ≥ 5	𝑚)	𝑒𝑛	𝑟𝑒𝑔𝑎𝑟𝑑𝑎𝑛𝑡	𝑙𝑎	𝑝𝑎𝑟𝑡𝑖𝑒	𝑑𝑒	𝑑𝑟𝑜𝑖𝑡𝑒:	

	

Méthode	différentielle:		

On	sait	que	𝑀(𝑥) 	= 	 ∫ 𝑉(𝑥)	
𝑀+(𝑥) = 	−11,25	𝑥, + 205𝑥 + 𝐶/							𝑥	𝜖	[0; 5]	
𝑀,(𝑥) = 	−11,25	𝑥, + 180𝑥 + 𝐶$									𝑥	𝜖	[5; 8]	

Avec	les	conditions	aux	bords:	𝑀+(𝑥 = 0) = −𝑀%	
𝑀,(𝑥 = 𝐿) = 0	 ⇔	−11,25	𝐿, + 180𝐿 + 𝐶$ 	= 0		
Il	aurait	aussi	été	possible	d’utiliser	la	continuité	du	moment:		
𝑀+(𝑥 = 5) 	= 𝑀,(𝑥 = 5) ⇔ −11,25	 ∗ 5, + 205 ∗ 5 −𝑀% 	= −11,25	 ∗ 5, + 180 ∗ 5 + 𝐶$					

On	obtient	ainsi:	
𝑀+(𝑥) = 	−11,25	𝑥, + 205𝑥 −𝑀%							𝑥	𝜖	[0; 5]	
𝑀,(𝑥) = 	−11,25	𝑥, + 180𝑥 − 720							𝑥	𝜖	[5; 8]	

En	utilisant	les	formules	ci-dessus,	on	peut	tracer	le	diagramme	des	moments	en	flexion:	

𝑉+(𝑥) = 	−22,5	𝑥	 + 205							𝑥	𝜖	[0; 5]	
𝑉,(𝑥) = 	−22,5	𝑥	 + 180							𝑥	𝜖	[5; 8]	

	

𝑀+(𝑥) = −𝑀% +X 𝑉+Y𝑥 ′Z
-

.
𝑑𝑥 ′ = −𝑀% +X (𝑅% − 𝑞𝑥′)

-

.
𝑑𝑥′

= (−845 + 205𝑥 − 11.25𝑥,)	𝑁 · 𝑚	
	

𝑀,(𝑥 = 𝐿) −𝑀,(𝑥) = X 𝑉,(𝑥0) 𝑑𝑥0
1

-
⇔𝑀,(𝑥) = 0 − X (180 − 22.5𝑥0)

1

-
𝑑𝑥0	 	

𝑀,(𝑥) = −720 + 180𝑥 − 11.25	𝑥,	𝑁 · 𝑚	 	
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Figure 8a.1.6 | Diagramme des moments en flexion 
	
	

(d) Déflection	de	la	poutre.	Deux	méthodes	:	i)	intégrer	M(x).	ii)	superposition	et	formules	
	
● La	courbure	de	la	poutre	due	aux	moments	en	flexion	en	tous	points	de	la	poutre	est	donné	par:	

On	 peut	 donc	 calculer	 l’équation	 de	 la	 déflection	 de	 la	 poutre	 par	 double	 intégration	 de	 l’Eq.	
(0.0.10):	

Pour	 pouvoir	 appliquer	 cette	 formule,	 il	 faut	 faire	 attention	 à	 calculer	 d’abord	 la	 dérivée	 de	 la	
déflection,	qui	doit	être	continue	en	𝑥 = 5	𝑚.	Il	ne	faut	pas	non	plus	oublier	que	le	moment	est	en	deux	
parties.	

On	obtient	ainsi:	
Pour	𝑥 ≤ 5:	

Pour	𝑥 > 5:	

𝑑!𝑤
𝑑𝑥! =

𝑀(𝑥)
𝐸𝐼 	 	

𝑤 =
1
𝐸𝐼
X _X 𝑀(𝑥′′)𝑑𝑥′′

-0	

.
`

-

.
𝑑𝑥′	 	

𝑤0(𝑥) − 𝑤0(0) =
1
𝐸𝐼
X 𝑀+Y𝑥 ′Z𝑑𝑥 ′
-

.
=
1
𝐸𝐼
X (−845 + 205𝑥′ − 11.25𝑥′,)𝑑𝑥′
-

.

=
1
𝐸𝐼
_−845𝑥 + 205

𝑥,

2
− 11.25

𝑥/

3
`		

	
Poutre	encastrée	à	x=0	→	𝑤0(0) = 0	

	

𝑤0(𝑥) − 𝑤0(𝑥 = 5) =
1
𝐸𝐼
X 𝑀,Y𝑥 ′Z𝑑𝑥 ′
-

3
=
1
𝐸𝐼
X (−720 + 180𝑥0 − 11.25𝑥′,)𝑑𝑥′
-

3
	 	

𝑤′(𝑥) = 𝑤′(𝑥 = 5) +
1
𝐸𝐼
(1818.75  − 720𝑥 + 90𝑥, − 3.75𝑥/)	 	
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On	peut	maintenant	intégrer	une	nouvelle	fois	pour	obtenir	la	déflection.	
Pour	𝑥 ≤ 5:	

	

Pour	𝑥 > 5:	

	
● Méthode	alternative	:	Il	est	aussi	possible	d’utiliser	la	Table	G		de	Gere&Goodno	-	beam	deflection	

pour	trouver	la	déflection	à	l’aide	de	la	méthode	de	superposition:	

	
On	trouve	alors	directement:	

Pour	𝑥 ≤ 5:	

	𝑤(𝑥) = 45-"

,$67
(6𝐿, − 4𝐿𝑥 + 𝑥,) − 8-"

967
Y3𝑎 − 𝑥 Z		

Pour	𝑥 > 5:		

	𝑤(𝑥) =
−𝑞𝑥,

24𝐸𝐼
(6𝐿, − 4𝐿𝑥 + 𝑥,) −

𝑃𝑎,

6𝐸𝐼
Y3𝑥 − 𝑎 Z		

	

𝑤0(𝑥) =
1
𝐸𝐼
(−312.5  − 720𝑥 + 90𝑥, − 3.75𝑥/)	 	

𝑤(𝑥) − 𝑤(𝑥 = 0) = X 𝑤 Y𝑥 ′Z𝑑𝑥 ′
-

.
=
1
𝐸𝐼
_−845

𝑥,

2
+ 205

𝑥/

6
− 11.25

𝑥$

12
`		 	

𝑤(𝑥 = 0) = 0							et							𝑤(𝑥) = 43.:.-";$+.-#4++.,3-$

+,67
	 	

𝑤(𝑥) − 𝑤(𝑥 = 5) = X 𝑤′(𝑥′)𝑑𝑥′
-

3
	 	

𝑤(𝑥) − 𝑤(𝑥 = 5) =
1
𝐸𝐼
(7398.4375  − 312.5𝑥 − 360𝑥, + 30𝑥/ − 0.9375𝑥$)	 	

𝑤(𝑥) =
6250  − 3750𝑥 − 4320𝑥, + 360𝑥/ − 11.25𝑥$

12𝐸𝐼
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En	sachant	que	q=22,5	;	L	=	8	m	et	a	=	5m,	on	trouve:		

Pour	𝑥 ≤ 5:	

𝑤(𝑥) =
−5070𝑥, + 410𝑥/ − 11.25𝑥$

12𝐸𝐼
	

Pour	𝑥 > 5:	

𝑤(𝑥) =
6250  − 3750𝑥 − 4320𝑥, + 360𝑥/ − 11.25𝑥$

12𝐸𝐼
	

	
On	retrouve	bien	les	mêmes	valeurs	qu’avec	l’intégration	des	moments	en	flexion.	
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Problème	8a.2	–	Calcul	de	la	déflection	à	partir	des	moments		(1)	
On	considère	la	poutre	𝐴𝐵	de	longueur	𝐿 = 12	m.	Les	diagrammes	de	force	de	cisaillement	et	de	

moment	en	flexion	sont	montrés	sur	la	figure	9.2.1.			
Module	de	Young	E.	Moment	quadratique	:	Iz	
On	vous	donne	le	moment	de	flexion:	

Calculer	la	déflection	𝒘(𝒙)	le	long	de	la	poutre.		
	

	

Figure 8a.2.1 | Diagrammes des forces, de cisaillement et de moment en flexion	de la poutre 𝐴𝐵. 
	

Comme	toujours,	2	options	pour	arriver	à	la	flèche	
a) Si	on	donne	le	diagramme	des	force,	trouver	𝑀(𝑥)	par	méthode	sections	(ou	par	méthode	

différentielle)	(ici	ça	a	été	fait	pour	vous),	et	enfin	𝒘(𝒙)	par	double	intégration	de	𝑴(𝒙)	
b) Superpositions	et	formulaire.	Point	de	départ	:	les	forces	et	moment	externes,	puis	appliquer	

superposition	se	servant	des	formulaires	des	flèches.	
	

𝑀+(𝑥) = 25	𝑥	kNm.					0<x<L/3	 (0.0.1)	

𝑀,(𝑥) 	= −35	𝑥 + 240	kNm.		L/3	<x	<2L/3	 (0.0.2)	

𝑀/(𝑥) = −35	𝑥 + 420	kNm.			2L/3	<x	<L	 (0.0.3)	
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Solution	8a.2–	Première	Option		
	
1. Conditions	au	bord	

a. 𝑤+(𝑥 = 0) 	= 	0	
b. 𝑤/(𝑥 = 𝐿) = 0	

	
2. Continuité:	

a. 𝑤+(𝑥 = 𝐿/3) 	= 	𝑤,(𝑥 = 𝐿/3)	
b. 𝑤,(𝑥 = 2𝐿/3) 	= 	𝑤/(𝑥 = 2𝐿/3)	
c. 𝑤’+ �𝑥 =

1
/
� = 	𝑤’,(𝑥 = 𝐿/3)	

d. 𝑤’, �𝑥 =
,1
/
� = 	𝑤’/(𝑥 = 2𝐿/3)	

	
La	courbure	de	la	poutre	due	aux	moments	en	flexion	en	tous	points	de	la	poutre	est	donné	par:	

On	peut	donc	calculer	l’équation	de	la	déflection	de	la	poutre	par	double	intégration	de		(0.0.4):	

	

On	 calcule	 d’abord	𝑤0(𝑥),	 la	 dérivée	 de	 la	 déflection,	 qui	 doit	 être	 continue	 en	𝑥 = 1
/
= 4	𝑚	

(point	𝐶),	ainsi	qu’en		𝑥 = ,1
/
= 8	𝑚	(point	𝐷).	On	obtient:	

Pour	𝑥 ≤ 1
/
:	

Pour	1
/
< 𝑥 < 2 1

/
:	

	

Pour	,1
/
< 𝑥 < 𝐿:	

𝑑!𝑤
𝑑𝑥! =

𝑀(𝑥)
𝐸𝐼 	 	

𝑤 =
1
𝐸𝐼
X _X 𝑀(𝑥′′)𝑑𝑥′′

-0	

.
`

-

.
𝑑𝑥′	 	

𝑤0(𝑥) − 𝑤0(0) =
1
𝐸𝐼
X (25	𝑥0)	𝑑𝑥′
-

.
	 	

𝑤0(𝑥) =
1
𝐸𝐼
_25

𝑥,

2
` + 𝑤0(0)		 	

𝑤0(𝑥) − 𝑤0 �𝑥 =
𝐿
3�

=
1
𝐸𝐼
X Y−35	𝑥 ′ + 240Z	𝑑𝑥′
-

1//
	 	

𝑤′(𝑥) = 𝑤0 �𝑥 =
𝐿
3�
+
1
𝐸𝐼
_−

35	𝑥,

2
+ 240𝑥 − 680`	 	

𝑤0(𝑥) =
1
𝐸𝐼
_−

35	𝑥,

2
+ 240𝑥 − 480` + 𝑤0(0)	 	

𝑤0(𝑥) − 𝑤0 �𝑥 =
2𝐿
3 �

=
1
𝐸𝐼
X (−35	𝑥′ + 420)𝑑𝑥′
-

,1
/
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Notez	que	l’on	ne	connaît	pas	encore	𝑤0(𝑥 = 0).	Nous	le	calculerons	par	la	suite.	
Nous	pouvons	maintenant	intégrer	une	seconde	fois	pour	calculer	la	déflection:	

Pour	𝑥 ≤ 1
/
:	

Pour	1
/
< 𝑥 < 2 1

/
:	

Pour	,1
/
< 𝑥 < 𝐿:	

En	utilisant	la	condition	que	la	déflection	au	point	B	doit	être	zéro	𝑤(𝑥 = 𝐿) = 0,	on	peut	trouver	
𝑤0(𝑥 = 0):	

Ce	qui	nous	donne	l’expression	finale	de	la	déflection:	

	

𝑤′(𝑥) = 𝑤0 �𝑥 =
2𝐿
3 �

+
1
𝐸𝐼
_−

35	𝑥,

2
+ 420𝑥 − 2240`	 	

𝑤0(𝑥) =
1
𝐸𝐼
_−

35	𝑥,

2
+ 420𝑥 − 1920` + 𝑤0(0)	 	

𝑤(𝑥) − 𝑤(𝑥 = 0) = X 𝑤0(𝑥0)𝑑𝑥0
-

.
= X �

1
𝐸𝐼
_25

𝑥′,

2
` + 𝑤0(0)� 𝑑𝑥0

-

.
	 	

𝑤(𝑥 = 0) = 0	and.		𝑤(𝑥) = ,3-#

967
+𝑤0(0)𝑥	 	

𝑤(𝑥) − 𝑤 �𝑥 =
𝐿
3�

= X 𝑤0(𝑥0)𝑑𝑥0
-

1//
= X �

1
𝐸𝐼
_−

35	𝑥′,

2
+ 240𝑥′ − 480` + 𝑤0(0)� 𝑑𝑥′

-

1//
	 	

𝑤(𝑥) − 𝑤 �𝑥 =
𝐿
3�

=
1
𝐸𝐼
_
−35𝑥/

6
+ 120𝑥, − 480𝑥 +

1120
3

` + 𝑤0(0)(𝑥 − 𝐿/3)	 	

𝑤(𝑥) =
1
𝐸𝐼
_
−35𝑥/

6
+ 120𝑥, − 480𝑥 + 640` + 𝑤0(0)𝑥	 	

𝑤(𝑥) − 𝑤 �𝑥 =
2𝐿
3 �

= X 𝑤0(𝑥0)𝑑𝑥0
-

,1//
= X �

1
𝐸𝐼
�−

35	𝑥 ′,

2
+ 420𝑥′ − 1920� + 𝑤0(0)�𝑑𝑥′

-

,1//
	 	

𝑤(𝑥) − 𝑤 �𝑥 =
2𝐿
3 �

=
1
𝐸𝐼
_
−35𝑥/

6
+
420𝑥,

2
− 1920𝑥 +

14080
3

`+𝑤0(0)(𝑥 −
2𝐿
3
)	 	

𝑤(𝑥) =
1
𝐸𝐼
_
−35𝑥/

6
+ 210𝑥, − 1920𝑥 + 6400`+𝑤0(0)𝑥	 	

𝑤(𝑥 = 𝐿) = 0 → 𝑤0(𝑥 = 0) = −
880
3𝐸𝐼

	 	

𝑤(𝑥) = {
25𝑥/

6𝐸𝐼
−
880
3𝐸𝐼

𝑥	; 	𝑥 ≤
𝐿
3
	
1
𝐸𝐼
_
−35𝑥/

6
+ 120𝑥, −

2320
3

𝑥 + 640` 	 ;
𝐿
3
≤ 𝑥

≤
2𝐿
3
	
1
𝐸𝐼
_
−35𝑥/

6
+ 210𝑥, −

6640
3

𝑥 + 6400` 	 ;
2𝐿
3
≤ 𝑥 ≤ 𝐿					
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Solution	8a.2	–	Deuxième	option	
Une	autre	manière	de	résoudre	ce	problème	est	de	diviser	le	système	initial	en	deux	et	d’appliquer	

la	méthode	de	superposition.	Les	deux	nouveaux	problèmes	à	résoudre	sont	illustrés	ci-dessous.	

	

Figure 8a.2.2 |Les	deux problèmes indépendants à résoudre pour	ajouter	les	solutions	ensuite. 

	
De	l’énoncé	(𝑉(𝑥)	et	𝑀(𝑥),	on	voit	que	F	=60	kN	et	M=	-180	kN.m.	on	donne	L=12	m	
	
Si	on	regarde	dans	les	formules	d’aides,	eg	Appendix	G	in	Geere	&	Goodno	book,	Table	G2.5	qui	est	

équivalent	au	problème	de	gauche,	donnant	directement	la	formule	de	la	déflection:	

Pour	 le	 problème	 de	 droite,	 on	 regarde	 dans	 la	 même	 table	 G2.9:	 (attention	 à	 bien	 utiliser	 le	
changement	de	variable	pour	la	partie	non	donnée	dans	la	table	:𝑎 ≤ 𝑥 ≤ 𝐿)	

La	déflection	finale	sera	donc	la	somme	de	l’Eq.	(0.0.24)	et	(0.0.25)	

en	simplifiant:	

Ce	qui	nous	donne	exactement	le	même	résultat	que	l’Eq.	(0.0.23).	 	

𝑤>(𝑥) = {−
𝐹𝑥
9𝐸𝐼

_
5𝐿2

9
− 𝑥2` = −

20𝑥
3𝐸𝐼

(80 − 𝑥2); 𝑥 ≤
𝐿
3
	−

𝐹(𝐿 − 𝑥)
18𝐸𝐼

_−
𝐿2

9
+ 2𝑥𝐿 − 𝑥2`

= −
10
3𝐸𝐼

(−192 + 304𝑥 − 36𝑥2 − 𝑥3);
𝐿
3
≤ 𝑥		

	

𝑤?(𝑥) = {
𝑀𝑥
6𝐿𝐸𝐼

_
2𝐿2

3
− 𝑥2` =

5𝑥
2𝐸𝐼

(96 − 𝑥2); 𝑥 ≤
2𝐿
3
	
𝑀(𝐿 − 𝑥)
6𝐿𝐸𝐼

_−
4𝐿2

3
+ 2𝑥𝐿 − 𝑥2`

= −
5
2𝐸𝐼

(−2304 + 480𝑥 − 36𝑥2 + 𝑥3); 𝑥 ≥
2𝐿
3
		

	

𝑤@A@BC(𝑥) = {−
𝐹𝑥
9𝐸𝐼

_
5𝐿2

9
− 𝑥2` +

𝑀𝑥
6𝐿𝐸𝐼

_
2𝐿2

3
− 𝑥2` ; 𝑥

≤
𝐿
3
	−

𝐹(𝐿 − 𝑥)
18𝐸𝐼

_−
𝐿2

9
+ 2𝑥𝐿 − 𝑥2` +

𝑀𝑥
6𝐿𝐸𝐼

_
2𝐿2

3
− 𝑥2` ;

𝐿
3
≤ 𝑥

≤
2𝐿
3
	−

𝐹(𝐿 − 𝑥)
18𝐸𝐼

_−
𝐿2

9
+ 2𝑥𝐿 − 𝑥2` +

𝑀(𝐿 − 𝑥)
6𝐿𝐸𝐼

_−
4𝐿2

3
+ 2𝑥𝐿 − 𝑥2` ; 𝑥 ≥

2𝐿
3
		

	

𝑤@A@BC(𝑥) = {
1
𝐸𝐼
�
25
6
𝑥3 −

880
3
𝑥� 	 ; 𝑥 ≤

𝐿
3
	
1
𝐸𝐼
�640 −

2320
3

𝑥 + 120𝑥2 −
35
6
𝑥3� ;

𝐿
3
≤ 𝑥

≤
2𝐿
3
	
1
𝐸𝐼
�6400 −

6640
3

𝑥 + 210𝑥2 −
35
6
𝑥3� ; 𝑥 ≥

2𝐿
3
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- Problème	8a.3	–	Extraire	le	diagramme	des	forces	à	partir	de	la	flèche	
- On	considère	une	poutre	de	longueur	2𝑳 = 𝟐	𝐦	avec	une	rigidité	en	flexion	EI	constante	le	long	de	

la	poutre.		
- La	flèche	de	la	poutre	est	donnée	par	les	2	expressions	suivantes:		

𝑝𝑜𝑢𝑟	0 < 𝑥 < 𝐿											𝑤(𝑥) =
1
𝐸𝐼 I−

1
24𝑞$𝑥

% +
3
32𝑞$𝐿𝑥

& −
5
96𝑞$𝐿

'𝑥'K	 (0.0.4)	

𝑒𝑡		

𝑝𝑜𝑢𝑟	𝐿 < 𝑥 < 2𝐿						𝑤(𝑥) =
1
𝐸𝐼 I−

1
24𝑞$𝑥

% +
3
32𝑞$𝐿𝑥

& −
5
96𝑞$𝐿

'𝑥' +
1
24𝑞$

(𝑥 − 𝐿)% +
1
12𝑞$𝐿

(𝑥 − 𝐿)&K	 (0.0.5)	

	
Déterminer	:	

(a) Le	moment	de	flexion	Mz(x)	le	long	de	la	poutre	
(b) La	force	de	cisaillement	V(x)	le	long	de	la	poutre	
(c) Les	forces	de	réactions	aux	supports	(et	leur	positions)	
(d) Dessiner	le	diagramme	des	forces	

	

Figure 8a.3.1 | Déflection de la poutre 
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Solution	
Qu’est-ce	qui	est	donné?		

Équations	de	déflection	de	la	poutre	
Longueur	de	la	poutre	2𝐿 = 2	𝑚	

Hypothèses	
Le	matériau	est	homogène	et	isotrope.	

Qu’est-ce	qui	est	demandé?	
(a) Diagramme	des	moments	en	flexion	
(b) Diagramme	des	forces	de	cisaillement	
(c) Forces	de	réaction	
(d) Diagramme	des	forces	

Principes	et	formules	
(a) Diagramme	des	moments	en	flexion	

La	courbure	de	la	poutre	due	aux	moments	en	flexion	en	tout	point	est	donné	par:	

Ainsi,	par	dérivation	de	l’équation	de	déflection,	on	obtient	directement	le	moment	en	flexion:	
Pour	𝑥 < 𝐿:	

Pour	𝑥 ≥ 𝐿	

En	𝑥 = 𝐿	:	

	

𝑑!𝑤
𝑑𝑥! =

𝑀(𝑥)
𝐸𝐼 	 	

𝑑, � 1𝐸𝐼 �−
1
24 𝑞0𝑥

4 + 3
32 𝑞0𝐿𝑥

3 − 5
96 𝑞0𝐿

2𝑥2��
𝑑𝑥,

=
𝑀(𝑥)
𝐸𝐼

	 	

1
𝐸𝐼 N−

1
2𝑞0𝑥

2 +
9
16𝑞0𝐿𝑥 −

5
48𝑞0𝐿

2O =
𝑀(𝑥)
𝐸𝐼 	 	

𝑀(𝑥) = −
1
2
𝑞.𝑥, +

9
16
𝑞.𝐿𝑥 −

5
48
𝑞.𝐿,	 	

𝑑, � 1𝐸𝐼 �−
1
24𝑞.𝑥

$ + 3
32𝑞.𝐿𝑥

/ − 5
96𝑞.𝐿

,𝑥, + 1
24𝑞.(𝑥 − 𝐿)

$ + 1
12𝑞.𝐿(𝑥 − 𝐿)

/��
𝑑𝑥,

=
𝑀(𝑥)
𝐸𝐼

	 	

1
𝐸𝐼
�−
1
2
𝑞.𝑥, +

9
16
𝑞.𝐿𝑥 −

5
48
𝑞.𝐿, +

1
2
𝑞.(𝑥 − 𝐿), +

1
2
𝑞.𝐿(𝑥 − 𝐿)� =

𝑀(𝑥)
𝐸𝐼

	 	

𝑀(𝑥) = −
1
2
𝑞.𝑥, +

9
16
𝑞.𝐿𝑥 −

5
48
𝑞.𝐿, +

1
2
𝑞.(𝑥 − 𝐿), +

1
2
𝑞.𝐿(𝑥 − 𝐿) =

1
48
𝐿(−5𝐿 + 3𝑥)𝑞.	 	

𝑀(𝑥 = 𝐿4) = 𝑀(𝑥 = 𝐿+) = −
𝑞𝑜𝐿

2

24
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Figure 8a.3.2 | Diagramme	des	moments	en	flexion 

	
(b) Diagramme	des	forces	de	cisaillement	

La	force	de	cisaillement	en	tout	point	le	long	de	la	poutre	est	donné	par:	

Pour	(𝑥 < 𝐿):	

Pour	(𝑥 ≥ 𝐿):	

	
	

	

Figure 8a.3.3 | Diagramme	des	forces	de	cisaillement 

𝑑𝑀(𝑥)
𝑑𝑥 = 𝑉(𝑥)	 	

𝑉(𝑥) =
𝑑 �−12𝑞.𝑥

, + 9
16𝑞.𝐿𝑥 −

5
48𝑞.𝐿

,�
𝑑𝑥

	 	

𝑉(𝑥) = −𝑞.𝑥 +
9
16
𝑞.𝐿	 	

𝑉(𝑥) =
𝑑 �−12𝑞.𝑥

, + 9
16𝑞.𝐿𝑥 −

5
48𝑞.𝐿

, + 12𝑞.(𝑥 − 𝐿)
, + 12𝑞.𝐿(𝑥 − 𝐿)�

𝑑𝑥
	 	

𝑉(𝑥) = −𝑞.𝑥 +
9
16
𝑞.𝐿 + 𝑞0(𝑥 − 𝐿) +

1
2
𝑞0𝐿 =

1
16
𝑞0𝐿	𝑝𝑜𝑢𝑟	𝑥 = 𝐿		
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(c) Forces	de	Réaction		

On	remarque	à	partir	du	diagramme	des	forces	de	cisaillement	de	la	Figure	8b.3.3	qu’une	charge	
distribuée	uniforme	est	appliquée	entre	A	et	C	(𝑉(𝑥) ≠ 𝑐𝑠𝑡𝑒),	alors	qu’aucune	charge	n’est	appliquée	
entre	C	et	B	(𝑉(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒).	

	
On	 remarque	 aussi	 trois	 discontinuités	 dans	 ce	 diagramme,	

respectivement	 aux	points	A,	B	 et	C,	 ce	qui	par	définition	 correspond	à	3	
charges	ponctuelles	appliquées.	Nous	les	nommerons	pour	la	suite	𝑅�⃗%,	𝑅�⃗ Eet	
𝑅�⃗ F .	On	peut	essayer	de	choisir	une	direction	pour	chacune	(si	on	se	trompe	
lors	 de	 cette	 étape,	 ce	 n’est	 pas	 grave,	 on	 trouvera	 simplement	 une	 force	
négative	ensuite):	

En	calculant	la	force	de	cisaillement	pour	𝑥 = 0,	on	obtient:	

Ainsi,	en	coupant	très	proche	de	l’origine	𝑥 = 0	et	en	prenant	la	section	sur	la	
gauche,	on	peut	écrire	l’équation	d’équilibre	des	forces:	

	
	
	
	
	
Réaction	au	point	B:	
En	calculant	la	force	de	cisaillement	pour	𝑥 = 2𝐿,	on	obtient:	

On	 coupe	maintenant	 la	 poutre	 très	 proche	 de	 la	 bordure	 de	 droite	 et	 on	
prend	la	section	sur	la	droite.	En	appliquant	l’équilibre	des	forces,	on	a:	

	
Réaction	au	point	C:	

𝑅�⃗% = 𝑅% · 𝑦�;	𝑅�⃗ E = 𝑅E · 𝑦�; 𝑅�⃗ F = 𝑅F · (−𝑦�)	
On	a	choisi	ses	directions	en	se	basant	sur	le	diagramme:	aux	points	A	et	B,	𝑉(𝑥)	est	

positif,	tandis	qu’au	point	C,	𝑉(𝑥)	est	négatif.	
	
	
Réaction	au	point	A:	

	

𝑉(0) = −𝑞.𝑥 +
9
16
𝑞.𝐿 =

9
16
𝑞.𝐿	 	

𝑅�⃗% + 𝑉�⃗ (0) = 𝑅% · 𝑦� + 𝑉(𝑥 = 0) · (−𝑦�) = 0 → 𝑅% = 𝑉(𝑥 = 0) =
9
16
𝑞.𝐿	 	

𝑉(𝑥 = 2𝐿) = −𝑞.2𝐿 +
9
16
𝑞.𝐿 + 𝑞.(2𝐿 − 𝐿) +

1
2
𝑞.𝐿 =

1
16
𝑞.𝐿	 	

𝑅�⃗ E + 𝑉�⃗ (2𝐿) = 𝑅E · 𝑦� + 𝑉(𝑥 = 2𝐿) · 𝑦� = 0 → 𝑅E = −
1
16
𝑞.𝐿	 	
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Enfin,	 nous	 pouvons	 nous	 intéresser	 à	 ce	 qui	 se	 passe	 en	 	𝑥 = 𝐿.	 	 On	 peut	 calculer	 la	 force	 de	
cisaillement	à	gauche	et	à	droite	(la	force	de	cisaillement	est	en	effet	divisée	en	deux	formules):	

	
Si	on	prend	une	section	de	la	poutre	juste	autour	du	point	C,	on	peut	appliquer	l’équilibre	des	forces	

en	ce	point:		

	

Maintenant	que	nous	connaissons	les	forces	de	réactions,	il	est	possible	de	vérifier	l’équilibre	du	
système	complet:	

Souvenez-vous	que	les	signes	des	valeurs	de	l’Eq.	(0.0.30)	sont	définies	par	le	choix	de	direction	des	
réactions	de	l’Eq.	(0.0.16).	

	
Pour	 l’analyse	 des	 moments	 en	 flexion,	 on	 remarque	 du	 diagramme	 de	 la	 Figure	 8b.3.2	 des	

discontinuités	en	𝐴	et	𝐵,	ce	qui	signifie	qu’un	moment	ponctuel	est	appliqué	en	ces	points.	On	choisira	
dans	les	deux	cas	que	les	moments	ont	une	direction	positive	selon	l’axe	z.	

En	coupant	proche	de	la	bordure	gauche	de	la	poutre	et	en	prenant	la	section	
de	gauche,	on	peut	écrire	l’équilibre	des	moments:	

	

𝑉(𝑥 = 𝐿;) =
1
16
𝑞.𝐿	 	

𝑉(𝑥 = 𝐿4) = −𝑞.𝐿 +
9
16
𝑞.𝐿 = −

7
16
𝑞.𝐿	 	

𝑉�⃗ (𝐿;) + 𝑉�⃗ (𝐿4) + 𝑅�⃗ F = 𝑉(𝐿;) · (−𝑦�) + 𝑉(𝐿4)𝑦� + 𝑅F · (−𝑦�) = 0	 	

𝑅F = 𝑉(𝐿4) − 𝑉(𝐿;) = −
1
2
𝑞.𝐿	 	

𝑅�⃗% + 𝑅�⃗ E + 𝑅�⃗ F + 𝑞.𝐿 · (−𝑦�) = 𝑅𝐴 · 𝑦� + 𝑅E · 𝑦� + 𝑅F · (−𝑦�) + 𝑞.𝐿 · (−𝑦�)

= �
9
16
𝑞.𝐿 −

1
16
𝑞.𝐿 +

1
2
𝑞.𝐿 − 𝑞.𝐿� 𝑦� = 0	

	

𝑀��⃗ % = 𝑀% · 𝑧̂; 	𝑀��⃗ E = 𝑀E · 𝑧�	
	

	
Moment	au	point	A:	

	

𝑀��⃗ % +𝑀��⃗ GH@(𝑥 = 0) = 𝑀% · 𝑧̂ + 𝑀GH@(𝑥 = 0) · (𝑧̂) = 0 → 𝑀% = −𝑀GH@(𝑥 = 0) =
5
48
𝑞.𝐿,	
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De	manière	équivalente,	on	coupe	proche	de	la	bordure	droite	de	la	poutre	et	

on	prend	la	section	de	droite.	On	peut	donc	écrire	l’équilibre	des	moments:	

	
Connaissant	 ces	moments,	 on	 peut	maintenant	 vérifier	 que	 l’équation	 d’équilibre	 des	moments	

dans	toute	la	poutre	est	satisfaite:		

	
(d) Diagramme	des	forces	

Finalement,	nous	pouvons	dessiner	le	diagramme	des	forces	en	donnant	toutes	les	valeurs	pour	les	
forces	et	moments	de	réactions	comme	illustré	sur	la	Figure	8b.3.4.	N’oubliez	pas	que	la	direction	choisie	
pour	le	dessin	ne	représente	pas	le	sens	physique,	nous	pouvons	donc	garder	le	choix	de	direction	fait	
initialement.	

Les	réactions	sont	donc:	

	

	

Figure 8a.3.4 | Diagramme	des	forces 
	

	 	

𝑀��⃗ E +𝑀��⃗ GH@(𝑥 = 2𝐿) = 𝑀E · 𝑧̂ + 𝑀GH@(𝑥 = 2𝐿) · (−𝑧̂) = 0 → 𝑀E = 𝑀GH@(𝑥 = 2𝐿) =
1
48
𝑞.𝐿,	 	

𝑀% +𝑀E − 𝑅F𝐿 + 𝑅E2𝐿 −
𝑞.𝐿,

2
= 𝑞.𝐿, �

5
48

+
1
48

+
1
2
−
1
8
−
1
2�

= 0	 	

𝑅% =
9
16
𝑞.𝐿;	𝑅E = −

1
16
𝑞.𝐿;	𝑅F = −

1
2
𝑞.𝐿;𝑀% =

5
48
𝑞.𝐿,;𝑀E =

𝑞.𝐿,

48
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Problème	8a.4	–	Fléchissement	avec	une	force	axiale	
Une	poutre	𝐴𝐵	de	longueur	𝐿 = 4	𝑚	est	supportée	en	ses	extrémités.	On	impose	une	force	F0	et	un	

moment	M0	au	centre	C.		𝐹. = 30√2	𝑁	avec	un	angle	de	45°.	𝑀. = 20	𝑁 · 𝑚.		
La	 section	 de	 la	 poutre	 est	 rectangulaire,	 de	 dimensions	 𝑏 = 10	𝑐𝑚	 (largeur	 en	 z),	 𝑑 = 20	𝑐𝑚	

(épaisseur	en	y),	surface	𝐴 = 200	𝑐𝑚,.		Le	module	de	Young	du	matériau	est	𝐸 = 200	𝐺𝑃𝑎.	 	
	

Déterminer:	
(a) Les	forces	de	réaction	aux	points	A	et	B.	
(b) La	force	de	cisaillement	V(x)	
(c) Le	moment	de	flexion	M(x)	
(d) Les	contraintes	maxima	en	compression	et	en	traction.	
(e) La	déflection	w(x)	de	la	poutre.	
	

	

Figure 8a.4.1 | Force de cisaillement et moment en flexion relatifs à la poutre 𝐴𝐵. 
	

Solution	
Qu’est-ce	qui	est	donné?		

Force	𝐹. = 30√2	𝑁	at	45°	
Moment	𝑀. = 20	𝑁 · 𝑚	
Longueur	de	la	poutre	𝐿 = 4	𝑚	

Hypothèses	
Le	matériau	est	homogène	et	isotrope.	

Qu’est-ce	qui	est	demandé?	
(a) Forces	de	réaction	aux	points	A	et	B	
(b) Diagramme	des	forces	de	cisaillement	V(x)	
(c) Diagramme	des	moments	en	flexion	M(x)	
(d) Contraintes	maximales	en	tension	et	en	compression	
(e) La	déflection	de	la	poutre	w(x)	
	
Principes	et	formules	
(a) Forces	de	réaction	au	points	A	et	B	
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On	calcule	 les	 forces	de	 réaction	à	partir	du	diagramme	des	 forces	de	 la	poutre	entière	 comme	
illustré	sur	la	Figure	8b.4.2.	

	

Figure 8a.4.2 | Diagramme	des	forces	de	la	poutre 𝐴𝐵. 

On	écrit	les	équations	d’équilibre	des	forces	en	𝑥	et	𝑦:	

𝛴𝐹𝑥 = 0 → −𝑅𝐴𝑥 +𝐹𝐻 = 0 → 𝑅𝐴𝑥 = 𝐹𝐻 = 𝐹0
√2
2 = 30	𝑁	 	

	

𝛴𝐹𝑦 = 0 → 𝑅𝐴𝑦 +𝑅𝐵 −𝐹𝑉 = 𝑅𝐴𝑦 +𝑅𝐵 − 30V2
√2
2 = 𝑅𝐴𝑦 +𝑅𝐵 − 30 = 0	 	

On	remarque	qu’aucun	moment	de	réaction	n’est	appliqué	aux	points	A	et	B.	Ainsi,	 à	partir	des	
équations	d’équilibre	des	moments,	on	obtient:	

Ce	qui	nous	donne:	

(b) Diagramme	des	forces	de	cisaillement	
Une	fois	encore,	il	est	possible	d’utiliser	deux	méthodes	pour	trouver	la	force	de	cisaillement	(ainsi	que	
le	moment	en	flexion):	i)	méthode	section.	ii)	méthode	différentielle	
	

Méthode	des	sections:	
On	peut	couper	la	poutre	en	𝑥 < 𝐿/2	et	écrire	les	équations	d’équilibre	des	forces	pour	la	partie	

gauche	de	la	section:		

𝛴𝑀𝐴 = 0	 ⟹ −𝐹𝑉 %
𝐿
2&−𝑀0 +𝑅𝐵(𝐿) = 0		 	

𝑅E =
𝐹M𝐿 + 2𝑀.

2𝐿
=
4 · 30 + 40

8
= 20	𝑁	 	

𝑅E = 20	𝑁				&				𝑅%# = 10	𝑁	 	
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Figure 8a.4.3 |Force	de	cisaillement: Diagramme	des	forces	pour 𝑥 < 𝐿/2. 
	

On	applique	le	même	processus	pour	𝐿/2 < 𝑥 < 𝐿,	comme	illustré	par	la	Figure	8b.4.4,	seulement	
cette	fois	nous	considérerons	la	partie	droite	de	la	section:	

	
Figure 8a.4.4 |Force	de	cisaillement: Diagramme	des	forces	pour 𝐿/2 < 𝑥 < 𝐿. 

	

Pour	calculer	la	force	de	cisaillement	au	point	C	on	considère	la	Figure	8b.4.5:	
	

	
Figure 8a.4.5 |Force	de	cisaillement:	Diagramme	des	forces	pour	élément	de	poutre	autour	de 𝑥 = 𝐶. 

	

	
	
	
Méthode	différentielle:	Comme	aucune	charge	distribuée	n’est	appliquée	sur	la	poutre,	on	a	𝑞(𝑥) = 	0		

	

!

"# $ % &"' $ % &
(# $ % &(' $ % &

")

*+

−𝑉+(𝑥) + 𝑅%# = 0	 	

𝑉+(𝑥) = 𝑅%# = 10	𝑁	 	

𝑉,(𝑥) + 𝑅E = 0 → 𝑉,(𝑥) = −20	N	 	

𝛥𝑉(𝑥 = 𝐶) 	= −𝐹𝑉 							→ 							𝑉2(𝑥 = 2) = 𝑉1(𝑥 = 2)− 30 = 10− 30 = −20	𝑁	 	
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Pour	la	force	de	cisaillement,	On	peut	utiliser	que	𝑉(𝑥) 	= 	−∫ 𝑞(𝑥)𝑑𝑥	
𝑉+(𝑥) = 𝐶+							𝑥 < 𝐿/2	
𝑉,(𝑥) = 	𝐶,						𝑥 ≥ 𝐿/2	

Avec	les	conditions	aux	bords:	𝑉+(𝑥 = 0) = 𝑅%,#	
𝑉,(𝑥 = 𝐿) = −𝑅E		

On	obtient:	
𝑉+(𝑥) = 	10		𝑁				𝑥 < 𝐿/2	
𝑉,(𝑥) = −20	𝑁			𝑥 ≥ 𝐿/2	

	
En	utilisant	les	valeurs	calculées	précédemment,	on	peut	maintenant	dessiner	le	diagramme:	

	
Figure 8a.4.6 | Diagramme	des	forces	de	cisaillement  
	
(c) Diagramme	des	moments	en	flexion	
On	peut	utiliser	soit	les	coupes	(sections)	,	soit	intégrer	𝑉(𝑥)	(méthode	différentielle).	

Méthode	des	sections:	Considérons	la	Figure	8b.4.3:	on	écrit	l’équation	d’équilibre	des	moments	de	A	à	
C,	en	s'intéressant	à	la	partie	gauche	de	la	section:	

De	C	à	B,	on	écrit	l’équation	d’équilibre	des	moments	par	rapport	à	la	partie	gauche	de	la	section	
illustrée	dans	la	Figure	8b.4.4:	

Enfin,	on	utilise	la	Figure	8b.4.5	pour	calculer	que:	

Ainsi,	en	combinant	l’Eq.	(0.0.13)	et	l’Eq.	(0.0.12),	on	obtient:	

𝑀+(𝑥) = 𝑀+(0) +X 𝑉+(𝑥0)𝑑𝑥0
-

.
= 0 + X 𝑅%#𝑑𝑥0

-

.
= 𝑅%# ∙ 𝑥 = 10𝑥	 	

𝑀,(𝑥) − 𝑀,(𝑥 = 2) = X 𝑉,(𝑥0)𝑑𝑥0
-

,
= X (−20)𝑑𝑥0

-

,
	 	

𝑀,(𝑥 = 2) −𝑀+(𝑥 = 2) = −𝑀. → 𝑀,(𝑥 = 2) = 𝑀1(𝑥 = 2) −𝑀. = 20 + 20 = 40	𝑁 · 𝑚	 	

𝑀,(𝑥) = 40 − 20(𝑥 − 2) = 80 − 20𝑥	
	
Méthode	différentielle:	Le	moment	de	flexion	en	tout	point	le	long	de	la	poutre,	étant	donné	
qu’aucun	moment	ponctuel	n’est	appliqué,	est	donné	par:		

𝑀(𝑥) = X 𝑉(𝑥0)𝑑𝑥0
-

.
	

𝑀+(𝑥) = 10𝑥 + 𝐶/							𝑥 < 𝐿/2	
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En	utilisant	les	valeurs	calculées	précédemment,	on	peut	maintenant	dessiner	le	diagramme	des	
moments	en	flexion:	

	

	

Figure 8b.4.7 | Diagramme	des	moments	en	flexion 

 

!

𝑀,(𝑥) = −20𝑥 +	𝐶$		𝑥 ≥ 𝐿/2	
Avec	les	conditions	aux	bords:	𝑀+(𝑥 = 0) = 0	

𝑀,(𝑥 = 𝐿) = 0	 ⇔ 	−20𝐿 + 𝐶$ = 0		
On	obtient:	

𝑀+(𝑥) = 	10𝑥																			𝑥 < 𝐿/2	
𝑀,(𝑥) = −20𝑥 + 80				𝑥 ≥ 𝐿/2	
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Figure 8a.4.8 | Diagramme résumé des forces de cisaillement et moments	de	la	poutre	AB 
	

(d) Contraintes	maximales	en	tension	et	en	compression	
Sur	la	partie	gauche	de	la	poutre	(𝑥 < 𝐿/2),	on	retrouve	deux	contributions	à	la	contrainte,	a)	la	

partie	due	à	la	flexion	et	b)	la	partie	due	à	l’élongation	générée	par	la	force	axiale.		
Sur	la	partie	de	droite	(𝑥 > 𝐿/	2)de	la	poutre	cependant,	on	retrouve	seulement	la	partie	due	à	la	

flexion	de	la	poutre.	Pour	cette	partie,	étant	donné	que	la	section	transversale	est	symétrique,	on	peut	
écrire:	

On	commence	par	calculer	 le	second	moment	d’inertie	𝐼!,#!autour	de	 l’axe	Z	dans	 le	plan	yz,	en	
utilisant	la	formule	suivante:	

𝜎OB-,@,PQHRGHS = 𝜎OB-,T,PQHRGHS =	
𝑀OB-	
𝐼!,#!

𝑑
2
	 	

𝐼!,#! = ∬%
	 𝑦,𝑑𝐴 =

𝑏𝑑/

12
	 	

𝐼!,#! =
(10)(20/)

12
104U = 6.7 ∙ 1043	𝑚$		 	
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La	contribution	de	la	flexion	sera	maximum	proche	du	centre	de	la	poutre	(à	L/2)	pour	chacune	des	
deux	moitiés.	

En	plus	de	la	contribution	de	la	flexion,	pour	la	moitié	de	gauche,	on	a	aussi	une	charge	axiale	à	
considérer.	Cette	charge	axiale	allonge	 la	poutre,	et	génère	une	contrainte	normale	en	tension.	Cette	
contrainte	vaut:	

On	peut	maintenant	calculer	les	quatre	différentes	options	où	la	contrainte	maximale	pourrait	se	
situer:	à	𝑥 = 𝐿/2	mais	dans	la	partie	de	droite	ou	de	gauche,	et	en	haut	ou	en	bas	de	la	poutre	?	

La	contrainte	maximale	est	donc	située	en	haut	et	en	bas	de	la	poutre,	juste	à	droite	du	point	
central.	

(e) Équation	de	la	déflection	de	la	poutre	
Ici,	 deux	 méthodes	 peuvent	 être	 utilisées	 pour	 trouver	 la	 déflection:	 i)	 par	 intégration	 ou	 ii)	 par	
superposition.	
Intégration:	

La	courbure	de	la	poutre	due	aux	moments	de	flexion	en	tout	point	est	donné	par:	

Ainsi,	on	peut	calculer	la	déflection	de	la	poutre	par	double	intégration	de	l’Eq.	(0.0.23):	

En	faisant	cette	double	intégration,	il	faut	faire	attention	au	fait	que	la	première	intégrale	va	générer	
des	 constantes	 qu’il	 faudra	 par	 la	 suite	 éliminer.	 Il	 est	 donc	 préférable	 de	 procéder	 par	 étapes	:	 de	
commencer	par	calculer	w’(x),	puis	la	déflection	w(x).	

Comme	on	peut	le	voir	sur	la	Figure	8b.4.7	le	moment	est	défini	en	deux	parties.	
Pour	0 ≤ 𝑥 ≤ 2:	

𝜎QCAHS =
𝐹V
𝐴
=

30
0.02

𝑃𝑎 = 1.5	𝑘𝑃𝑎		 	

|𝜎|PA@@AO,CQW@ =
𝐹V
𝐴
−	
𝑀 �𝑥 = 𝐿

2
4
�	

𝐼!,#!

𝑑
2
=

30
0.02

+
20 · 0.1
6.7 ∙ 1043

= 28500	𝑃𝑎		 	

|𝜎|@AX,CQW@ =
𝐹V
𝐴
+	
𝑀 �𝑥 = 𝐿

2
4
�	

𝐼!,#!

𝑑
2
= ª

30
0.02

−
20 · 0.1
6.7 ∙ 1043

ª = 31500	𝑃𝑎		 	

|𝜎|@AX,YGSZ@ =	
𝑀 �𝑥 = 𝐿

2
;
�	

𝐼!,#!

𝑑
2
=

40 · 0.1
6.7 ∙ 1043

= 60000	𝑃𝑎		 	

|𝜎|PA@@AO,YGSZ@ =	
𝑀 �𝑥 = 𝐿

2
;
�	

𝐼!,#!

𝑑
2
=

40 · 0.1
6.7 ∙ 1043

= 60000	𝑃𝑎		 	

𝑑,𝑤
𝑑𝑥,

=
𝑀(𝑥)
𝐸𝐼
	 	

𝑤 =
1
𝐸𝐼
X _X 𝑀(𝑥′′)𝑑𝑥′′	

-0	

.
` 𝑑𝑥

-

.
′	 	

𝑤1′ 	(𝑥)−𝑤1′ (0) =
1
𝐸𝐼" 𝑀1\𝑥′]𝑑𝑥′

𝑥

0
=
1
𝐸𝐼" 10𝑥′𝑑𝑥′

𝑥

0
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Pour		2 ≤ 𝑥 ≤ 4:	

	
Nous	pouvons	maintenant	calculer	w(x)	à	partie	de	w’(x)	:	
Pour	0 ≤ 𝑥 ≤ 2:	

Pour		2 ≤ 𝑥 ≤ 4::	

En	utilisant	la	condition	que	la	déflection	au	point	B	vaut	zéro,	on	peut	trouver		𝑤+0(𝑥 = 0)	

	
Ce	qui	donne	une	expression	finale	pour	la	déflection	:.	
Pour		0 ≤ 𝑥 ≤ 2::	

Pour		2 ≤ 𝑥 ≤ 4::	

Superposition:	
En	utilisant	la	Table	G	Gere&Goodno-	beam	deflection	montrée	en	Figure	8a.4.9: 

𝑤1′ (𝑥) =
1
𝐸𝐼
10𝑥2
2 +𝑤+. (0) =

5
𝐸𝐼𝑥

2 +𝑤/′(0)	 	

𝑤2′ (𝑥)−𝑤2′(𝑥 = 2) =
1
𝐸𝐼" 𝑀2\𝑥′]𝑑𝑥′

𝑥

2
=
1
𝐸𝐼" \80 − 20𝑥′]𝑑𝑥′

𝑥

2
		 	

𝑤2′ (𝑥) =
1
𝐸𝐼 ^80(𝑥 − 2)− 10\𝑥

2 − 4]_+ %
20
𝐸𝐼 +𝑤1′(0)& = 𝑤1′ (0)−

10
𝐸𝐼 \10 − 8𝑥 + 𝑥

2]	 	

𝑤1(𝑥)−𝑤1(𝑥 = 0) = " 𝑤1
.0𝑥!1𝑑𝑥′

𝑥

0
	 	

𝑤1(𝑥 = 0) = 0		et				𝑤1(𝑥) =
5𝑥3

3𝐸𝐼+𝑤1
′ (0)𝑥	 	

𝑤2(𝑥)−𝑤2(𝑥 = 2) = " 𝑤′(𝑥′)𝑑𝑥′
𝑥

2
	 	

𝑤2(𝑥) =
40
3𝐸𝐼 +𝑤1

′ (0) · 2 + 𝑤1′ (0)(𝑥 − 2) −
10
𝐸𝐼 %10(𝑥 − 2)− 4\𝑥

2 − 4]+
𝑥3 − 8
3 &	 	

𝑤2(𝑥) =
−10\−24+ 30𝑥 − 12𝑥2 + 𝑥&]

3𝐸𝐼 +𝑤/
. (0)𝑥	 	

𝑤2(𝑥 = 4) = 0 → 𝑤1′ (𝑥 = 0) = −
80
3𝐸𝐼	

	

𝑤/(𝑥) =
5𝑥& − 80𝑥

3𝐸𝐼 	 	

𝑤2(𝑥) = −
10
3𝐸𝐼 \𝑥

3 − 12𝑥2 + 38𝑥 − 24]	 	
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Figure	8a.4.9	|	Poutres	et	formules	extraites	de	la	table	G	Gere	&	Goodno	

	
On	voit	ici	que	pour	la	deuxième	poutre,	le	moment	est	opposé	à	ce	qu’on	trouve	dans	le	tableau.	Pour	
pouvoir	utiliser	cette	formule,	 il	 faut	un	changement	de	variable.	Il	 faut	donc	tout	d’abord	remplacer	
𝑀.	par	−𝑀.,	 puis	 remplacer	 𝑥	 par	 (𝐿 − 𝑥).	 Cette	 équation	 sera	 ainsi	 disponible	 pour	 0 ≤ (𝐿 − 𝑥) 	≤
𝐿/2	 ⇔ 𝐿/2 ≤ 𝑥	 ≤ 𝐿			
On	trouve	directement:		

	𝑥 < 𝐿/2	

𝑤+(𝑥) =
−𝑃𝑥
48𝐸𝐼

(3𝐿, − 4𝑥,) −
−𝑀.	𝑥
24𝐿𝐸𝐼

(𝐿, − 4𝑥,)	

	𝑥 ≥ 𝐿/2	

𝑤,(𝑥) =
4?!	(14-)
,$167

(𝐿, − 4(𝐿 − 𝑥),)+	48(14-)
$U67

(3𝐿, − 4(𝐿 − 𝑥),)	
	

Si	on	fait	attention	aux	changements	de	variables,	c’est	quand	même	beaucoup	plus	rapide…	

La	force	horizontale	change	les	contraintes	dans	la	poutre,	mais	pas,	avec	nos	simplifications,	la	flèche	de	
la	poutre	
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Problème	8a.5	-	Calcul	de	la	déflection	à	partir	des	moments	(2)	
On	considère	une	poutre	𝐴𝐵	de	longueur	𝐿=4	m	.	Les	diagrammes	de	force	de	cisaillement	relative	

et	de	moment	en	flexion	sont	données	sur	la	figure	8b.5.1.	
Les	moments	en	flexion	sont	:	

	

	

Figure 8a.5.1 Diagrammes de force de cisaillement et de moment en flexion relatifs à la poutre 𝐴𝐵. 
	 	

𝑀+(𝑥) = 32𝑥 − 10𝑥,	𝑁 · 𝑚.											0 < 𝑥 <
𝐿
2
	

𝑀,(𝑥) = 24 − 8(𝑥 − 2)	𝑁 · 𝑚					
𝐿
2
< 𝑥 <

4𝐿
5
	

𝑀/(𝑥) = 14.4 − 18(𝑥 − 3.2)	𝑁 · 𝑚								$1
3
< 𝑥 < 𝐿	
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Solution	8a.5	
	
I	Conditions	au	bord,	interprétés	des	V(x)	et	M(x)	aux	extrémités.	𝑀(𝑥) = 0	de	chaque	coté,	et	𝑉(𝑥)	
est	discontinue,	comme	pour	un	pivot.	On	va	donc	dire	

a. w1(x=0)	=	0	
b. w3(x=L)=0					
	

II	continuité:	
c. w1(x=L/2)	=	w2(x=L/2)	
d. w2(x=4L/5)	=	w3(x=4L/5)	
e. w’1(x=L/2)	=	w’2(x=L/2)	
f. w’2(x=4L/5)	=	w’3(x=4L/5)	

	
Comme	pour	les	exercices	précédent,	on	calcule	la	déflection	pour	chaque	portion	de	la	poutre:	

On	calcule	d’abord	la	première	dérivée	de	la	déflection,	parce	que	nous	avons	besoin	d’imposer	la	
continuité	aux	points	𝐶	et	𝐷	(𝑥 = 1

,
	et	𝑥 = $1

3
	respectivement).	Rappelez	vous	que	nous	ne	connaissons	

pas	les	valeurs	de	la	dérivée	de	la	déflection	aux	extrémités	de	la	poutre,	seulement	à	l’encastrement	en		
𝑥 = 0.	

	
Pour	𝑤’(𝑥)	

Pour	0 ≤ 𝑥 ≤ 1
,
:	

Pour	1
,
< 𝑥 < $1

3
:	

Pour	$1
3
< 𝑥 < 𝐿:	

𝑑!𝑤
𝑑𝑥! =

𝑀(𝑥)
𝐸𝐼 	

	

𝑤1′ (𝑥)−𝑤1′ (0) =
1
𝐸𝐼" `32𝑥. − 10𝑥.2a𝑑𝑥.

𝑥

0
=
1
𝐸𝐼 %16𝑥

2 −
10𝑥3
3 &		 	

𝑤2′ (𝑥)−𝑤2′ (𝑥 = 2) =
1
𝐸𝐼" `24 − 8(𝑥′ − 2)a𝑑𝑥′

𝑥

2
	 	

𝑤2′ (𝑥) = 𝑤2′ (𝑥 = 2)+
1
𝐸𝐼 \40𝑥 − 4𝑥

2 − 64]	 	

𝑤2′ (𝑥) =
1
𝐸𝐼%40𝑥 − 4𝑥

2 −
80
3 &+𝑤

′(0)	 	

𝑤3′ (𝑥)−𝑤3′ (𝑥 = 3.2) =
1
𝐸𝐼" (14.4 − 18(𝑥′ − 3.2))𝑑𝑥′

𝑥

3.2
	 	

𝑤3′(𝑥) = 𝑤3′ (𝑥 = 3.2)+
1
𝐸𝐼 \72𝑥 − 9𝑥

2 − 138.24]	 	
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On	peut	maintenant	intégrer	une	deuxième	fois	pour	calculer	la	déflection:	

Pour	𝑥 ≤ 1
,
:	

	

Pour	1
,
< 𝑥 < $1

3
:	

	

Pour	$1
3
< 𝑥 < 𝐿:	

En	appliquant	la	condition	que	la	déflection	au	point	B	doit	valoir	zéro,	on	peut	obtenir	la	valeur	de	
la	déflection	en	𝑥 = 0:	

Ce	qui	nous	donne	l’expression	complète	de	la	déflection	:	

	

𝑤3′ (𝑥) =
1
𝐸𝐼%72𝑥 − 9𝑥

2 −
233.6
3 &+𝑤′(0)	 	

𝑤1(𝑥)−𝑤1(𝑥 = 0) = " 𝑤1′(𝑥′)𝑑𝑥′
𝑥

0
= " b

1
𝐸𝐼c16𝑥′

2 −
10𝑥′3

3 d 	+ 𝑤′(0)e𝑑𝑥′	
𝑥

0
	 	

𝑤+(𝑥 = 0) = 0	𝑒𝑡	𝑤+(𝑥) =
1
𝐸𝐼 `

16
3 𝑥

3 − 5
6𝑥

4a+𝑤′(0)𝑥	 	

𝑤2(𝑥)−𝑤2(𝑥 = 2) = " 𝑤′(𝑥′)𝑑𝑥′
𝑥

2
= " c

1
𝐸𝐼 `40𝑥′ − 4𝑥′

2 − 26.6a+𝑤′(0)d𝑑𝑥′
𝑥

2
	 	

𝑤2(𝑥)−𝑤2(𝑥 = 2) =
1
𝐸𝐼%20𝑥

2 −
4𝑥3
3 − 26.6𝑥 − 16.14&+𝑤′(0)(𝑥 − 2)	 	

𝑤2(𝑥) =
1
𝐸𝐼%20𝑥

2 −
4𝑥3
3 −

80
3 𝑥 +

40
3 &+𝑤

′(0)𝑥	 	

𝑤3(𝑥)−𝑤3(𝑥 = 3.2) = " 𝑤′(𝑥′)𝑑𝑥′
𝑥

3.2
= " c

1
𝐸𝐼 `72𝑥′ − 9𝑥′

2 − 77.8a+𝑤′(0)d𝑑𝑥′
𝑥

3.2
	 	

𝑤3(𝑥)−𝑤3(𝑥 = 3.2) =
1
𝐸𝐼 \36𝑥

2 − 3𝑥3 − 77.8𝑥 − 21.38]+𝑤′(0)(𝑥 − 3.2)	 	

𝑤3(𝑥) =
1
𝐸𝐼 \36𝑥

2 − 3𝑥3 − 77.8667𝑥 + 67.9467]+𝑤′(0)𝑥	 	

𝑤3(𝑥 = 4) = 0 → 𝑤′(𝑥 = 0) = −
35.12
𝐸𝐼 	 	

𝑤1(𝑥) =
1
𝐸𝐼%

16
3 𝑥

3 −
5
6𝑥

4&−
35.12
𝐸𝐼 	𝑥	; 																					0	 ≤ 𝑥 ≤

𝐿
2		

𝑤2(𝑥) = −
4
3𝐸𝐼 \−10.+46.34𝑥 − 15. 𝑥

2 + 𝑥3]									;
𝐿
2 ≤ 𝑥 ≤

4𝐿
5 		

𝑤3(𝑥) =
1
𝐸𝐼 \67.9467  − 112.987𝑥 + 36. 𝑥

2 − 3. 𝑥3]	; 						
4𝐿
5 ≤ 𝑥 ≤ 𝐿					

	


