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Série 8a - solution

Probleme 8a.1 - Charge concentrée et distribuée

On consideére une poutre AB, encastrée en A, avec une force ponctuelle et une force distribuée. Le
moment d’inertie a I'axe neutre est [, ,, = 3.35 m*. Trouver:

(a) Les forces de réactions au point A et B.
(b) La force de cisaillement V(x)

(c) Le moment de flexion M(x)

(d) La fleche w(x) de la poutre.

25N
y
A
22.5 N/m
Y \ 4 Y l Y \ 4 Y Y
> x
A b
50 m— «— 3.0 m—>
y
3
l0.617 m
ze— T
C \ 2269 m
Y

Figure 8a.1.1 Le cantilever et sa section transverse. L’origine C est située sur I'axe neutre.
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Solution

Qu’est ce qui est donné?

Charge distribuée: g = 22.5 N/m
Charge concentrée: F = 25 N
Longueur: L = 8 m

Hypothéses

Le matériau est homogeéne et isotrope..
La coupe transversale de la poutre dans le plan ZY reste non déformée dans toute sa longueur..

Qu'est-ce qui est demandé?

(a) Les forces de réaction au point A.

(b) Le diagramme des forces de cisaillement.
(c) Le diagramme des moments en flexion.
(d) L’équation de la déflection de la poutre.

(a) Forces de réaction au point A

On calcule les forces de réaction a partir du diagramme des forces de la poutre entiere:

25N

Figure 8a.1.2 | Diagramme des forces de la poutre.

En sommant les forces en y, on a:

L
XF =RA—F—f qdx=0-> R, =254 (22.5)(8) =205N
0

y

En utilisant I'équilibre des moments M,, on déduit le moment M,:

L

L
IM,=0- +MA—<f Equ-)—F~5=0—>MA=845N-m
0

Ce qui nous donne finalement:

MA:84‘5N'm, RA:205N

(b) Diagramme des forces de cisaillement V (x)

Sur cette poutre, deux forces externes sont appliquées: la premiére est distribuée uniformément
sur toute la longueur de la poutre, et la seconde est une charge ponctuelle a x = 5 m.

On peut trouver V(x) par deux méthodes: i) méthode des sections et ii) méthode différentielle.
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Méthode des sections: Nous allons considérer puis analyser deux parties distinctes de la poutre:
DeAaC(x <5m):

I 22.5 N/m \ 4

LN ol

)I ‘C\ B _ .
Ray M, (x) My (x) «—3.0 mﬂ‘

Figure 8a.1.3 | Diagramme des forces et forces internes pour x < 5m

On peut écrire la formule de 1'équilibre des forces pour la partie de gauche comme illustré sur la
Figure 8b.1.3:

Vi(x) = R4 — qx = (205 — 22.5x) N
DeCaD(x =5m):

M, (x) M, (x) ‘

Figure 8a.1.4 | Diagramme des forces et forces internes pour x = 5m

Comme nous I'avons fait précédemment, nous écrivons la formule de I'équilibre des forces pour la
partie de gauche comme illustré sur la Figure 8b.1.4:

Vo(x) = Ry — qx — F = (180 — 22.5x) N

Méthode différentielle: On considére tout d’abord la charge distribuée appliquée sur la
poutre:

q(x) =225 xe€[0;8]

Pour la force de cisaillement, on utilise la relation V(x) = — [ q(x) dx
Vi(x)= =225x +C; x¢€][0;5]
Vo(x) = =22,5x +C, x €[5 8]

Avec les conditions aux bords: V; (x = 0) = 205N

Voix=L)=0 & -225+8+C, =0

On obtient:
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Vi(x) = =22,5x +205 xe€[0;5]
Vo(x)= —=225x +180 xe€[5;8]

Nous pouvons maintenant tracer le diagramme des forces de cisaillement:

V[N] 4
205

925
67.5

b
A /
A
4

Figure 8a.1.5 | Diagramme des forces de cisaillement

(c) Diagramme des moments en flexion.
Encore une fois, il est possible de trouver ce diagramme par les deux méthodes.
Méthode des sections:

DeAaC (x < 5m)enregardant la partie de gauche:
My (x) — My (x = 0) = My (x) + M, =[5 V(x)dx’

X X
M;(x) = —M, +f Vi(x)dx' = —M, +f (R4 — gx") dx’
0 0
= (—845 + 205x — 11.25x?) N - m

De CaB (x = 5m) enregardant la partie de droite:

L L
M,(x = L) — My(x) = f V(x")dx" © My(x) =0— f (180 — 22.5x") dx'

M,(x) = —720+ 180x — 11.25x2N -m

Méthode différentielle:

Onsaitque M(x) = [ V(x)
M;(x) = —11,25x? +205x + C3  x € [0;5]
M,(x) = —11,25x%> +180x + C,  x € [5; 8]
Avec les conditions aux bords: M;(x = 0) = —M,
My(x=L)=0 & —11,251>+180L+C, =0
Il aurait aussi été possible d’utiliser la continuité du moment:
M;(x =5) = M,(x =5) e —11,25 *52 4+ 2055 — M, = —11,25 *52+180* 5+ C,
On obtient ainsi:
M;(x) = —11,25x? + 205x — M, x€[0;5]
M,(x) = —11,25x% + 180x — 720  x € [5; 8]
En utilisant les formules ci-dessus, on peut tracer le diagramme des moments en flexion:
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-101.25

r845

Figure 8a.1.6 | Diagramme des moments en flexion

(d) Déflection de la poutre. Deux méthodes : i) intégrer M(x). ii) superposition et formules

e Lacourbure de la poutre due aux moments en flexion en tous points de la poutre est donné par:

d’w  M(x)
dx?  EI

On peut donc calculer I'équation de la déflection de la poutre par double intégration de I'Eq.

(0.0.10):
1 X X!
W=Eo<-[;) M(x"Ndx >dx

Pour pouvoir appliquer cette formule, il faut faire attention a calculer d’abord la dérivée de la

déflection, qui doit étre continue en x = 5 m. Il ne faut pas non plus oublier que le moment est en deux
parties.

On obtient ainsi:

Pour x < 5:

1(* o . 1
w'(x) —w'(0) = Ef M, (x)dx = Ef (—845 + 205x’ — 11.25x'?)dx’
0 0

_ 1 _gasx 2055 — 11255
T El x 2 )

Poutre encastrée ax=0->w'(0) = 0
Pour x > 5:

1 1T
w'(x) —w'(x = 5) = Ef My(x)dx" = Ef (=720 + 180x' — 11.25x'2)dx’
5 5

1
wx)=w(x=5)+ 5(1818.75 — 720x + 90x? — 3.75x3)
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1
w'(x) = i (—=312.5 — 720x + 90x?% — 3.75x3)

On peut maintenant intégrer une nouvelle fois pour obtenir la déflection.

Pour x < 5:

x N, 1 x? x3 x*
w(x) —w(x = 0) =f0w (x")dx =E<—8457+205€—11.255>

—5070x24+410x3-11.25x%

wx=0)=0 et wx) = YT

Pour x > 5:

w(x) — wix = 5) = f W dx
5

1
w(x) —w(x =5) = £l (7398.4375 — 312.5x — 360x2 + 30x3 — 0.9375x%)

6250 — 3750x — 4320x2 + 360x3 — 11.25x*
12E1

w(x) =

e Méthode alternative : Il est aussi possible d’utiliser 1a Table G de Gere&Goodno - beam deflection
pour trouver la déflection a I'aide de la méthode de superposition:

1 — QXZ 2 2 — ¥ 2 2
1 llllll} v——EE/(GL—MX+X) v'——S—H(3L—3LX+X)
~ ql® ~ ql?
% = 8El %= &g
P 2
5 v=—Pi(3a—x) v o= —ﬂ(Za—x) 0D=x=a
| 6EI 261
| #‘ P Pa
|<—a b v=—@(3x—a) vo= ~oh a=x=1)
Pa? Pa?
At x = a v —@ _ﬁ
Pa’ Pa?
8= (3L — 0, = ——
s = el T A %=
On trouve alors directement:
Pour x < 5:
_Zax? o 2y _ Px? _
w(x) = YT (6L — 4Lx + x*) e (3a x )
Pour x > 5:
2 2
—qx Pa
= 6L% — 4L ) ——(3x -
w(x) 24EI( x + x%) 6El(x a )
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En sachant que q=22,5; L =8 m eta = 5m, on trouve:

Pour x < 5:

—5070x2 + 410x3 — 11.25x*
12E1

w(x) =

Pour x > 5:

6250 — 3750x — 4320x2 + 360x3 — 11.25x*
12E1

w(x) =

On retrouve bien les mémes valeurs qu’avec l'intégration des moments en flexion.
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Probleme 8a.2 - Calcul de la déflection a partir des moments (1)

On considere la poutre AB de longueur L = 12 m. Les diagrammes de force de cisaillement et de
moment en flexion sont montrés sur la figure 9.2.1.

Module de Young E. Moment quadratique : [,

On vous donne le moment de flexion:

M;(x) = 25 x kNm. 0<x<L/3 (0.0.1)
M,(x) = —35x + 240 kNm. L/3 <x <2L/3 (0.0.2)
Ms(x) = —35x + 420 kNm. 2L/3 <x <L (0.0.3)

Calculer la déflection w(x) le long de la poutre.

4
A
25kN
A c D B
> X
L/3 L/3 L/3
TS e ——
M
140 kNm
100 kNm
A /c\ D B
| Y ox
—40 kNm
L/3 L/3 L/3

Figure 8a.2.1 | Diagrammes des forces, de cisaillement et de moment en flexion de la poutre AB.

Comme toujours, 2 options pour arriver a la fleche
a) Si on donne le diagramme des force, trouver M (x) par méthode sections (ou par méthode
différentielle) (ici ¢ca a été fait pour vous), et enfin w(x) par double intégration de M(x)
b) Superpositions et formulaire. Point de départ : les forces et moment externes, puis appliquer
superposition se servant des formulaires des fleches.
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Solution 8a.2- Premiere Option

1. Conditions au bord
a wi(x=0)=0
b. W3 (x = L) =0

2. Continuité:
a wi(x=L/3) = wy(x=L/3)
b. wy(x =2L/3) = ws(x = 2L/3)

c wy (x = g) = w,x=1L/3)

d w(x=2)= wsx=2L/3)
La courbure de la poutre due aux moments en flexion en tous points de la poutre est donné par:

d’w  M(x)
dx?  EI
On peut donc calculer I'équation de la déflection de la poutre par double intégration de (0.0.4):

1 X X!
W= | <L M(x"Ndx >dx

On calcule d’abord w'(x), la dérivée de la déflection, qui doit étre continue en x = é =4m

(point €), ainsi qu’'en x = % = 8 m (point D). On obtient:

w |~

Pourx <

1 X
W (x) — w'(0) = Ef (25 x') dx’
0

2

) = (255) 4w
w (X —EI 2 w
Pour= < x < 2%

3 3

w'(x) —w' (x = £>

1 X
3 (—35x" +240) dx’'

El), /5

T 2

2

L 1 35 x?
w(x) =w' (x = §> — + 240x — 680
1
El

35
w'(x) = <— X 240x — 480) +w'(0)

Pourz—; <x<L:

() —w' AL 35x' + 420)dx’
w'(x W<x—3>—E1%( X )dx

Concept. Méc 1 -micro 200 Page 9 of 29 © EPFL-STI-SMT



11-2024

') = w (x = 2E) + 2 355% | 420x — 2240
Wx_W<x_3> El 2 x

W) =5 2

1/ 35x2
- +420x — 1920 | + w'(0)
Notez que I'on ne connait pas encore w'(x = 0). Nous le calculerons par la suite.

Nous pouvons maintenant intégrer une seconde fois pour calculer la déflection:

X 12
W) —w(x = 0) = f W (x")dx' = f <$ <25 %) + W'(O)) dx’

0 0

L
Pourx < 7

X

3

+w'(0)x

w(x =0) =0and. w(x) = 265;1

L L
Pour-<x < 2-:
3 3

EI 2

x x 1/ 3542 , ,
f W (xdx! = f _ +240x' — 480 ) + w'(0) | dx
L/3 L/3

W(x)—w<x=§>=

Ly 1 (-35x3 , 1120
>= 5 + 120x —480x+T +w'(0)(x — L/3)

1 [—35x3 5
3 + 120x° — 480x + 640 | + w'(0)x

Pour%<x < L:

2L\ (" x [1( 35x° ,
w(x) — W<x - —) =f W (x)dx' = f ~(- +420%' — 1920 | + w'(0)
3 2L/3 213\ E1 2

0 2L
>+w'<0)<x -

© 2Ly 1(-35x3 420x 1408
wix W<x_3>_51 6 2 x

1 (—35x3 5
w(x) = 7l 6 + 210x* — 1920x + 6400 | +w’'(0)x

En utilisant la condition que la déflection au point B doit étre zéro w(x = L) = 0, on peut trouver

w'(x = 0):
880

w(x=L)=0—>W’(x=O)=—ﬁ

Ce qui nous donne I'expression finale de la déflection:

25x3 880 L 1 (—35x3 , 2320 L
W(x):{6EI —ﬁx;xS§E 6 + 120x~ — x + 640 ;§Sx

2L 1 (=35x% 0, 6640 o o).2h_ o,

=3 E\ 6 X X 3 =rE

© EPFL-STI-SMT
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Solution 8a.2 - Deuxieme option

Une autre maniere de résoudre ce probléme est de diviser le systéme initial en deux et d’appliquer
la méthode de superposition. Les deux nouveaux problémes a résoudre sont illustrés ci-dessous

- N

Figure 8a.2.2 | Les deux problémes indépendants a résoudre pour ajouter les solutions ensuite.

De I'énoncé (V(x) et M(x), on voit que F =60 kN et M= -180 kN.m. on donne L=12 m

Si on regarde dans les formules d’aides, eg Appendix G in Geere & Goodno book, Table G2.5 qui est
équivalent au probleme de gauche, donnant directement la formule de la déflection:

512 20x L F(L-x)
wr(x) = {—— — x| ==—B0—-x*);x <= ————— ——+2xL—x
9EI\ 9 3EI 3 18EI1 9

L
= —— (=192 + 304x — 36x% — x%); —<x
3EI

Pour le probleme de droite, on regarde dans la méme table G2.9: (attention a bien utiliser le
changement de variable pour la partie non donnée dans la table :a < x <L)

Mx [2L? 5x 2L M(L—x) [ 4L?
WM(x) {— — —x? ——(96—x)x< ——— | ——+ 2xL — x?
6LEI\ 3 2EI 3 6LEI 3

5 , 2L
= ———(—2304 + 480x — 36x% + x3);x > —
2EI 3

La déflection finale sera donc la somme de I'Eq. (0.0.24) et (0.0.25)

Fx (5L | Mx (21*
Weotar(X) = (=g 57 = +6LEI ERR A
L F(L-x) Mx (217 .\ L
<-—-—— ——+2xL—x +———-x*);=<x
3 18EI 9 6LEI\ 3 3
2L F(L - x) M(L-x){ 4L? , 2L
<= —-—— ——+2 xL—x* |+ —————+2xL—x* |;x > —
3 18EI 9 3

en simplifiant:

1 /25 880 L1 2320 35 L
Weotal(X) = E_<? ——X ;X<§— 640 — x + 120x° ——x) §<
35 2L
S——<6400 x + 210x* ——x>'x2—

Ce qui nous donne exactement le méme résultat que I'Eq. (0.0.23).
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- Probleme 8a.3 - Extraire le diagramme des forces a partir de la fleche

On considere une poutre de longueur 2L = 2 m avec une rigidité en flexion EI constante le long de

la poutre.
- Lafleche de la poutre est donnée par les 2 expressions suivantes:
— 1 1 4 3 3 5 242
pour 0 < x <L w(x) = Il [—ﬁqox + 3—2q0Lx - %qOL x ] (0.0.4)
et
pour L<x <2L w()= % [_2_14q°x4 + 3izq0Lx3 - 9—56q0L2x2 + 2—14q0(x - L)*+ 1—12q0L(x —-L)3 (0.0.5)

Déterminer :

(a) Le moment de flexion M,(x) le long de la poutre

(b) La force de cisaillement V(x) le long de la poutre

(c) Les forces de réactions aux supports (et leur positions)
(d) Dessiner le diagramme des forces

X 10 4

wET R L
qol* " x/

Figure 8a.3.1 | Déflection de la poutre
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Solution

Qu’est-ce qui est donné?

Equations de déflection de la poutre
Longueur de la poutre 2L =2 m

Hypothéses
Le matériau est homogene et isotrope.
Qu’est-ce qui est demandé?

(a) Diagramme des moments en flexion
(b) Diagramme des forces de cisaillement
(c) Forces de réaction

(d) Diagramme des forces

Principes et formules

(a) Diagramme des moments en flexion

La courbure de la poutre due aux moments en flexion en tout point est donné par:

d’w  M(x)
dx?  EI
Ainsi, par dérivation de I'’équation de déflection, on obtient directement le moment en flexion:
Pour x < L:
2 (1 1 4,3 3_ 0 2,2
@ (g1~ za %% + 33904 ~ g 904<’]) _ MGo)
dx? El
17 1 9 5 M (x)
I P 24 - - 2| =V
El[ 2907 g 90lx ~ gg ok ] El
M(x) + 0 L L?
x) = qoXx 16% x 48%
Pourx = L

1 1 3 5 1 1
d? (ﬁ [—ﬂCon4 + 3—2%Lx3 - %CIOLZXZ + 57000 — L)* + 75 q0L(x — L)3]) M)

dx? ~ EI
9 5 M(x)
£l [——CIOX + _6CIOLX - _SCIOL +5 CIo(x — L)+ CIoL(x L)]
9 5 5 1
M(x) ———qox +—6q0Lx——8q0L + = qo(x—L) + = qOL(x—L) ——L( 5L + 3x)q,
Enx=1L:
q,L’

Mx=L)=Mx=L,)=— ”
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0.06

0.04

0.02 B
i
H

v
X

Figure 8a.3.2 | Diagramme des moments en flexion

(b) Diagramme des forces de cisaillement

La force de cisaillement en tout point le long de la poutre est donné par:

dM(x)
o /@
Pour (x < L):
V) = d [‘%%xz + %%Lx - 4%610[‘2]
dx
9
V(x) = —qox + 1_6QOL
Pour (x = L):
V() = d [—%%xz +1i6q0Lx —4—SBQOL2 +%q0(x - L)? +%CI0L(X - L)]

dx

9
V(x) = —qox + 1_6q

1 1
ol +q,(x—1L) +quL =1—6q0Lpourx =L

—

> X
A \ c B
RB-RC ___________________________

Figure 8a.3.3 | Diagramme des forces de cisaillement
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(c) Forces de Réaction

On remarque a partir du diagramme des forces de cisaillement de la Figure 8b.3.3 qu’'une charge
distribuée uniforme est appliquée entre A et C (V(x) # cste), alors qu'aucune charge n’est appliquée
entre C et B (V(x) = constante).

On remarque aussi trois discontinuités dans ce diagramme,
respectivement aux points A, B et C, ce qui par définition correspond a 3 ' 1 V1 ‘
charges ponctuelles appliquées. Nous les nommerons pour la suite ﬁA, ﬁBet ¥
ﬁc. On peut essayer de choisir une direction pour chacune (si on se trompe

lors de cette étape, ce n’est pas grave, on trouvera simplement une force ¥ T " 1
négative ensuite): ¥

Positive shear

Ry=Rs 9 Rg =Rp-J;Rc =R¢ - (=9)
On a choisi ses directions en se basant sur le diagramme: aux points A et B, V' (x) est
positif, tandis qu’au point C, VV (x) est négatif.

Réaction au point A:

En calculant la force de cisaillement pour x = 0, on obtient:

9 9
V(0) = —qox + 1_6610L = 1_6QOL

x=0
Ainsi, en coupant trés proche de 'origine x = 0 et en prenant la section sur la
gauche, on peut écrire I'équation d’équilibre des forces: lv (x=0)
- — A~ ~ 9 5—
RA+V(O)=RA-y+V(x=O)-(—y)=0—>RA=V(x=0)=EqOL T
RA
Réaction au point B:
En calculant la force de cisaillement pour x = 2L, on obtient:
x=2L
9 1 1 :
V(x =2L) =—CI02L+1_6‘I0L+CIO(2L—L)+ECIOL=1_6%L :
V(x=2L)
On coupe maintenant la poutre trés proche de la bordure de droite et on ]
prend la section sur la droite. En appliquant I’équilibre des forces, on a: T
5 o 1 RB
RB+V(2L) =RB 'y+V(x=2L)'y=O—>RB = _1_6q0L

Réaction au point C:
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Enfin, nous pouvons nous intéresser a ce qui se passe en x = L. On peut calculer la force de
cisaillement a gauche et a droite (la force de cisaillement est en effet divisée en deux formules):

Vix=L%) = ! qol

16 1°
Vix=L")=—qoL +—qoL = ——qolL
0" T 1610 16 1°

Si on prend une section de la poutre juste autour du point C, on peut appliquer I’équilibre des forces
en ce point:
x=L

N -

Re

VI + VL) +Re =V - (=) + V(L )P +Re- (=9) =0

_ + 1
Rc=V({L)-VL") = —ECIOL

Maintenant que nous connaissons les forces de réactions, il est possible de vérifier I'équilibre du
systeme complet:

Ra+Rp+Re+qol - (—=9) =R, 9+ Rp -9+ Re - (=9) + qoL - (=)

= 9 L ! L L L L|y=0
—<16CI0 —16610 +ZCI0 do )3’—

Souvenez-vous que les signes des valeurs de I'Eq. (0.0.30) sont définies par le choix de direction des
réactions de I'Eq. (0.0.16).

Pour I'analyse des moments en flexion, on remarque du diagramme de la Figure 8b.3.2 des
discontinuités en A et B, ce qui signifie qu'un moment ponctuel est appliqué en ces points. On choisira
dans les deux cas que les moments ont une direction positive selon I'axe z.

—

MA:MA'ZA; MBzMB'Q

. x=0
Moment au point A: )
En coupant proche de la bordure gauche de la poutre et en prenant la section
T - M(x
de gauche, on peut écrire I'équilibre des moments:
My + Mipe(x = 0) = My - 2+ My (x = 0) - (2) = 0 > My = —Mpe (x Ma
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De manieére équivalente, on coupe proche de la bordure droite de la poutre et =aL
on prend la section de droite. On peut donc écrire I'équilibre des moments: M(x=2L) C
O
MB + Mint(x =2L) = Mp - Z+ Min,(x =2L) - (=2) = 0 > Mp = M (x = 2L) ="

Connaissant ces moments, on peut maintenant vérifier que I'équation d’équilibre des moments
dans toute la poutre est satisfaite:

qol? ,(5 1 1 1 1
M+ My = ReL + Ry2L = =2 =q0L< _____ )=0

(d) Diagramme des forces

Finalement, nous pouvons dessiner le diagramme des forces en donnant toutes les valeurs pour les
forces et moments de réactions comme illustré sur la Figure 8b.3.4. N'oubliez pas que la direction choisie
pour le dessin ne représente pas le sens physique, nous pouvons donc garder le choix de direction fait
initialement.

Les réactions sont donc:

9 1 1 5 5 qoL
Ra=1cdoli Rp = =77 0oLs Re = =5 oL My = 25q0L% My =~

Figure 8a.3.4 | Diagramme des forces
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Probleme 8a.4 - Fléchissement avec une force axiale

Une poutre AB de longueur L = 4 m est supportée en ses extrémités. On impose une force Fo et un
moment Mo au centre C. F, = 30v/2 N avec un angle de 45°. My = 20 N - m.

La section de la poutre est rectangulaire, de dimensions b = 10 cm (largeur en z), d = 20 cm
(épaisseur en y), surface A = 200 cm?. Le module de Young du matériau est E = 200 GPa.

Déterminer:

(a) Les forces de réaction aux points A et B.

(b) La force de cisaillement V(x)

(c) Le moment de flexion M(x)

(d) Les contraintes maxima en compression et en traction.
(e) La déflection w(x) de la poutre.

y
A
|
I
I

-

N o

Figure 8a.4.1 | Force de cisaillement et moment en flexion relatifs a la poutre AB.

Solution

Qu’est-ce qui est donné?

Force Fy = 30v/2 N at 45°

Moment My = 20N -m

Longueur de la poutre L =4 m
Hypothéses

Le matériau est homogene et isotrope.

Qu’est-ce qui est demandé?

(a) Forces de réaction aux points A et B

(b) Diagramme des forces de cisaillement V(x)

(c) Diagramme des moments en flexion M(x)

(d) Contraintes maximales en tension et en compression
(e) La déflection de la poutre w(x)

Principes et formules

(a) Forces de réaction au points A et B

Concept. Méc 1 -micro 200 Page 18 of 29 © EPFL-STI-SMT
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illustré sur la Figure 8b.4.2.

cPrL
y

A

On calcule les forces de réaction a partir du diagramme des forces de la poutre entiere comme

I 3

)} L

= L Rp
2 2
Figure 8a.4.2 | Diagramme des forces de la poutre AB.

On écrit les équations d’équilibre des forces en x et y:

V2
EFx:0_)_RAx+FH:O_)RAx:FH:F07:30N

V2
ZFy=0—>RAy+RB—FV=RAy+RB—3O\/§7=RAy+RB—30=0
On remarque qu’aucun moment de réaction n’est appliqué aux points A et B. Ainsi, a partir des
équations d’équilibre des moments, on obtient:

L
ZMAZO :_FV(

B = = =

20N
2L 8 0
Ce qui nous donne:

RB=20N & RAy=1ON
(b) Diagramme des forces de cisaillement

Méthode des sections:

Une fois encore, il est possible d’utiliser deux méthodes pour trouver la force de cisaillement (ainsi que
le moment en flexion): i) méthode section. ii) méthode différentielle
gauche de la section:

On peut couper la poutre en x < L/2 et écrire les équations d’équilibre des forces pour la partie

Concept. Méc 1 -micro 200
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y
nE e | Mo
R
M, (x)
Ray ) % Ry

Figure 8a.4.3 | Force de cisaillement: Diagramme des forces pour x < L/2.

—Vl(x) + RAy =0
Vl(X) = RAy =10N

On applique le méme processus pour L/2 < x < L, comme illustré par la Figure 8b.4.4, seulement
cette fois nous considérerons la partie droite de la section:

y
Mo Va(x)  Va(x)
j % My (x) ‘

Rp

I
2

Figure 8a.4.4 | Force de cisaillement: Diagramme des forces pour L/2 < x < L.

Vz(X) + RB =0- Vz(X) =—-20N

Pour calculer la force de cisaillement au point C on considere la Figure 8b.4.5:

nx=2) L y(x=2)
My (e = 2)( ol ) Ma(x = 2)

Fy

Figure 8a.4.5 |Force de cisaillement: Diagramme des forces pour élément de poutre autour de x = C.

AV(x=C) =—-Fy - Vy(x=2)=Vi(x=2)-30=10-30=-20N

Méthode différentielle: Comme aucune charge distribuée n’est appliquée sur la poutre,onaq(x) = 0
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Pour la force de cisaillement, On peut utiliser que V(x) = — [ q(x)dx
Vix)=C; x<L/2
Vo,(x)=C, x=1LJ2
Avec les conditions aux bords: V3 (x = 0) = Ry,
Vo(x =L) = —Rp
On obtient:
Vi(x)=10 N x<L/2
Vo(x) ==20N x>=1L/2

En utilisant les valeurs calculées précédemment, on peut maintenant dessiner le diagramme:

4
A

10N

v
=

—20N

Figure 8a.4.6 | Diagramme des forces de cisaillement

(c) Diagramme des moments en flexion
On peut utiliser soit les coupes (sections), soit intégrer V (x) (méthode différentielle).

Méthode des sections: Considérons la Figure 8b.4.3: on écrit 'équation d’équilibre des moments de A a
C, en s'intéressant a la partie gauche de la section:

X X
M, (x) = M,(0) +f Vi(xNdx' =0+ f Ryydx" = R4y x = 10x
0 0

De C a B, on écrit ’équation d’équilibre des moments par rapport a la partie gauche de la section
illustrée dans la Figure 8b.4.4:

X X
My(x) — My(x =2) = f Vo(xdx' = f (—20)dx’
2 2
Enfin, on utilise la Figure 8b.4.5 pour calculer que:

Mz(x= 2)—M1(x= 2) = _MO —)Mz(XZZ) =M1(x= 2)_M0 = 20+20:40Nm
Ainsi, en combinant I'Eq. (0.0.13) et I'Eq. (0.0.12), on obtient:

M,(x) =40 —20(x —2) =80 —20x

Méthode différentielle: Le moment de flexion en tout point le long de la poutre, étant donné
qu’aucun moment ponctuel n’est appliqué, est donné par:

M(x) = f U dx

0
My(x) =10x+C3 x<L/2
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My(x) =—-20x+ C, x > L/2
Avec les conditions aux bords: M;(x = 0) =0
My,(x=L)=0 & —-20L+C,=0
On obtient:
M;(x) = 10x x<L/2
M,(x) = —-20x+80 x=>1L/2

En utilisant les valeurs calculées précédemment, on peut maintenant dessiner le diagramme des
moments en flexion:

40 Nm

20 Nm

Figure 8b.4.7 | Diagramme des moments en flexion
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< + > o »l
Ryy > 5 Rp
Vv
A
10N
A c B . x
x=2m
—20N
M
A
40 Nm
20 Nm
A C B > x
x =2m

Figure 8a.4.8 | Diagramme résumé des forces de cisaillement et moments de la poutre AB

(d) Contraintes maximales en tension et en compression

Sur la partie gauche de la poutre (x < L/2), on retrouve deux contributions a la contrainte, a) la
partie due a la flexion et b) la partie due a I'élongation générée par la force axiale.

Sur la partie de droite (x > L/ 2)de la poutre cependant, on retrouve seulement la partie due a la
flexion de la poutre. Pour cette partie, étant donné que la section transversale est symétrique, on peut
écrire:

Mmax g

Omax,tbending — Omax,c,bending — I 2
Z,Yo

On commence par calculer le second moment d’inertie I, autour de I'axe Z dans le plan yz, en
utilisant la formule suivante:

bd3
Iz,yo = ffAysz = E

_a0ee)

8 _ ¢7.10-5
2y =T =6.7-107> m*
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La contribution de la flexion sera maximum proche du centre de la poutre (a L/2) pour chacune des
deux moitiés.

En plus de la contribution de la flexion, pour la moitié de gauche, on a aussi une charge axiale a
considérer. Cette charge axiale allonge la poutre, et génére une contrainte normale en tension. Cette
contrainte vaut:

Fy 30
Oclong = 7 = mPa = 1.5 kPa
On peut maintenant calculer les quatre différentes options ou la contrainte maximale pourrait se
situer: a x = L/2 mais dans la partie de droite ou de gauche, et en haut ou en bas de la poutre ?

-
o] 2 M(x:z)d—30+ 20-91 _ 28500
Olpottom,left = A Iz,yo 2 - 0.02 6.7 - 10_5 = a
-
o] _FH+M(x=§)d_ 30 20000
Oltopleft =7y Iy, 2 1002 67-1075| ¢
L+
M<x=7 ) d 4001
|U|top,right = Lo 5 = 6.7-10-5 = 60000 Pa
L+
M<x=7 )d 40-0.1
|0|bottom,right = Iz,yo 5 = 67-10-5 = 60000 Pa

La contrainte maximale est donc située en haut et en bas de la poutre, juste a droite du point
central.

(e) Equation de la déflection de la poutre
Ici, deux méthodes peuvent étre utilisées pour trouver la déflection: i) par intégration ou ii) par
superposition.
Intégration:
La courbure de la poutre due aux moments de flexion en tout point est donné par:
d’w  M(x)
dx?  EI

Ainsi, on peut calculer la déflection de la poutre par double intégration de I'Eq. (0.0.23):

1 X x!
W= i <L M(x"dx >dx

En faisant cette double intégration, il faut faire attention au fait que la premiére intégrale va générer
des constantes qu'il faudra par la suite éliminer. Il est donc préférable de procéder par étapes: de
commencer par calculer w’(x), puis la déflection w(x).

Comme on peut le voir sur la Figure 8b.4.7 le moment est défini en deux parties.
Pour 0 <x < 2:

I r 1 x 7 1 1 x I
w;y (x) —w;(0) =ﬁfo Mi(x)dx = Efo 10x'dx
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2

5
+w(0) = =x% +w,'(0)

wi(x) = — 7

El 2
Pour 2 <x <4:

I 1 x 7 1 1 x I
wy(X) —wy'(x =2) = ﬁfz M,(x)dx = ﬁfz (80 — 20x )dx'

, 1 20 , 10
W) = [0 — 2) — 10(x2 — 4)] + (ﬁ+ Wy (0)) = wy(0) ~ (10 — Bx + 7)

Nous pouvons maintenant calculer w(x) a partie de w’(x) :
Pour0 <x < 2:

w1(x) — wi(x = 0) = f w' ) dx'
0

wi(x=0)=0 et wy(x)= §—§+ w1(0)x

Pour 2 <x < 4:

wo(x) —wy(x =2) = L xw’(x’)dx’

3 _
wo(X) = % +wy(0) -2+ w;(0)(x — 2) —%(10@ —2)—4(x*—4)+ ad 3 8>

—10(—24 + 30x — 12x2 + x3)
3EI

En utilisant la condition que la déflection au point B vaut zéro, on peut trouver w;(x = 0)

wa(x) = + wi(0)x

80

wz(x=4)=0—>w’1(x=0)=—E

Ce qui donne une expression finale pour la déflection :.
Pour 0 < x < 2::

5x3 — 80x

wy(x) = 3E]

Pour 2 <x < 4:

10
Wz(X) = —m(x3 - 12x2 + 38x — 24)

Superposition:
En utilisant la Table G Gere&Goodno- beam deflection montrée en Figure 8a.4.9:
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)

N |~

P _ X 4 s P <<<
4 1 v 48E/(SL 4x?) v 16E/(L 4x?) 0=x=

P2 pL2
4 8 = Gnax = gz 0= 0= 155
L L
5 544

<

Mex M, L
v = ——(L2 — 4x)) = —— L (12— 124 (U =x= —>
24LE1 24LE 2

ML M,L
7 9, = ——
24F1 B 24F1

M,
8 ’\

)
L L
E 2

Figure 8a.4.9 | Poutres et formules extraites de la table G Gere & Goodno

5, =0 6=

On voit ici que pour la deuxieme poutre, le moment est opposé a ce qu’'on trouve dans le tableau. Pour
pouvoir utiliser cette formule, il faut un changement de variable. Il faut donc tout d’abord remplacer
M, par —M,, puis remplacer x par (L — x). Cette équation sera ainsi disponible pour 0 < (L —x) <
L/2 ©L/2<x <L

On trouve directement:

x<L/2
—M,x
12 — 4x2) — 0 12 — 42
w1(x) = Z8E] 56 *) = qargr & 49
x=L/2
Mo (L —P(L-%)
wy () = =2E0 (12 — 41— 0)2)+ T (317 - 4(L — 1))

Si on fait attention aux changements de variables, c’est quand méme beaucoup plus rapide...

La force horizontale change les contraintes dans la poutre, mais pas, avec nos simplifications, la fleche de
la poutre
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Probléeme 8a.5 - Calcul de la déflection a partir des moments (2)
On considére une poutre AB de longueur L=4 m . Les diagrammes de force de cisaillement relative

et de moment en flexion sont données sur la figure 8b.5.1.

Les moments en flexion sont :

L
M;(x) =32x — 10x2 N - m. O<x<§

L 4L
My(x)=24—-8(x—2)N-m E<x<?

M;(x) =144 —18(x —32)N-m =<x<lL

- L/)2—»

e 4L/5 L5

RAy By
%4
RA ’ 3
A D B
» X

x=16m

Figure 8a.5.1 Diagrammes de force de cisaillement et de moment en flexion relatifs a la poutre AB.
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Solution 8a.5

I Conditions au bord, interprétés des V(x) et M(x) aux extrémités. M (x) = 0 de chaque coté, et V (x)
est discontinue, comme pour un pivot. On va donc dire

a. wi(x=0)=0

b. ws(x=L)=0

I continuité:

wi(x=L/2) = wy(x=L/2)
wa(x=4L/5) = wiz(x=4L/5)
w'1(x=L/2) = w'y(x=L/2)
w'2(x=4L/5) = w'3(x=4L/5)

™o a0

Comme pour les exercices précédent, on calcule la déflection pour chaque portion de la poutre:
d’>w  M(x)
dx?  EI

On calcule d’abord la premiére dérivée de la déflection, parce que nous avons besoin d’'imposer la

o . L 4L : .
continuité aux points C et D (x = Jetx = - respectivement). Rappelez vous que nous ne connaissons

pas les valeurs de la dérivée de la déflection aux extrémités de la poutre, seulement a I'encastrement en
x=0.

Pour w’(x)

Pour0 <x <

N |~

: , 1 (x 1 10x3
W) (x) — w(0) = ﬁfo (32x' - 10x?) dx’ = ﬁ(16x2 - Tx>

PourZ < x < 2,
2 5
r r 1 x
Wy (X) — wy(x = 2) = EL (24 - 8(x' - 2)) dx’
r r 1 2
wo(x) = wy(x =2) + ﬁ(40x —4x? — 64)

I 1 80 I
w,(x) = i (40x — 4x2% — ?> +w (0)

Pour4—5L <x<L:

r r 1 x
wi(x) —w3(x =3.2) = EL 2(14.4 —18(x' — 3.2))dx’

r 1
w3'(x) = ws(x =3.2) + ﬁ(72x —9x? —138.24)
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/ 1 233.6 )
ws(x) = §<72x — 9x2 — T) +w (0)

On peut maintenant intégrer une deuxiéme fois pour calculer la déflection:

L
Pourx < >

x x /3
w1 (x) —wq(x = 0) = fo wy'()dx' = f (%(16%2—10; ) +w’(0)>dx'

0

wi(x=0)=0etw,(x)= %(g—éx:” —%x“) +w'(0)x

L 4L
Pour; <x< rE

Wy (X) —wy(x = 2) = L xw’(x’)dx’ - L * <% (40x’ — 4% — 26.6) + w’(0)> dx’

3

1 4 ,
Wa(X) — wa(x = 2) = ﬁ(20x2 _ % — 26.6x — 16.14> + W (0)(x — 2)

1 4x3 80 40 .
Wz(X) =E<20X2 —%—?X‘F?) +w (O)X

Pour4—5L <x<L:

x I I I x 1 I
W () — wa(x = 3.2) = f W ()dx = f <ﬁ(72x’ —9x” —77.8) +w (0)>dx’
3.2 3.2

1 I
w3 (x) —ws(x =3.2) = ﬁ(%x2 —3x3 —77.8x —21.38) + w (0)(x — 3.2)

1 I
w3(x) = i (36x? — 3x3 — 77.8667x + 67.9467) + w (0)x

En appliquant la condition que la déflection au point B doit valoir zéro, on peut obtenir la valeur de
la déflection en x = 0:

35.12

W3(X=4)=0—>W,(X=O)=—T

Ce qui nous donne I'expression compléte de la déflection :

1016 , 5\ 3512 L
W1(.X')=ﬁ ?x —g —Tx; OSXSE
4 L 4L
Wz(X) = —m(—lo +46.34x — 15.x2 + x3) ;E <x< ?
1 )
w3(x) = ﬁ(67'9467 —112.987x + 36.x% — 3.x3) ; < <x<L
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